【C++】STL——map和set

目录

1、序列式容器和关联式容器前

2、set

2.1 set类的介绍

2.2 set的构造和迭代器

2.3 set的增删查

set 的插入

set的查找

set的删除

2.4 multiset和set的差异

3、map

3 .1 pair类型

3.2 map的构造

3.3 map的增删查

map的构造遍历

  map的插入

map的删除

map的查找

3.4 map的数据修改

3.5 multimap和map的差异


1、序列式容器和关联式容器前

前面我们已经接触过STL中的部分容器如:string、vector、list、deque、array、forward_list等,这些容器统称为序列式容器,因为逻辑结构为线性序列的数据结构,两个位置存储的值之间一般没有紧密的关联关系,比如交换一下,他依旧是序列式容器。顺序容器中的元素是按他们在容器中的存储位置来顺序保存和访问的。

关联式容器也是用来存储数据的,与序列式容器不同的是,关联式容器逻辑结构通常是非线性结构,两个位置有紧密的关联关系,交换一下,他的存储结构就被破坏了。顺序容器中的元素是按关键字来保存和访问的。关联式容器有map/set系列和unordered_map/unordered_set系列。

2、set

2.1 set类的介绍

1. set是按照一定次序存储元素的容器
2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。
set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对
子集进行直接迭代。
5. set在底层是用二叉搜索树(红黑树)实现的。

template < class T,                      // set::key_type/value_typeclass Compare = less<T>,     // set::key_compare/value_compareclass Alloc = allocator<T>   // set::allocator_type> class set;

注意:
1. 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放
value,但在底层实际存放的是由<value, value>构成的键值对。
2. set中插入元素时,只需要插入value即可,不需要构造键值对。
3. set中的元素不可以重复(因此可以使用set进行去重)。
4. 使用set的迭代器遍历set中的元素,可以得到有序序列
5. set中的元素默认按照小于来比较
6. set中查找某个元素,时间复杂度为:\log_2 n
7. set中的元素不允许修改(为什么?)
8. set中的底层使用二叉搜索树(红黑树)来实现。

2.2 set的构造和迭代器

set的构造我们关注以下几个接口即可。
set的支持正向和反向迭代遍历,遍历默认按升序顺序,因为底层是二叉搜索树,迭代器遍历走的中序;支持迭代器就意味着支持范围for,set的iterator和const_iterator都不支持迭代器修改数据,修改关键字数据,破坏了底层搜索树的结构。

 // empty (1) ⽆参默认构造explicit set (const key_compare& comp = key_compare(),const allocator_type& alloc = allocator_type());// range (2) 迭代器区间构造template <class InputIterator>set (InputIterator first, InputIterator last,const key_compare& comp = key_compare(),const allocator_type& = allocator_type());// copy (3) 拷⻉构造set (const set& x);// initializer list (5) initializer 列表构造set (initializer_list<value_type> il,const key_compare& comp = key_compare(),const allocator_type& alloc = allocator_type());// 迭代器是⼀个双向迭代器// 正向迭代器iterator   -> a bidirectional iterator to const value_typeiterator begin();iterator end();// 反向迭代器reverse_iterator rbegin();reverse_iterator rend();

2.3 set的增删查

set的大部分接口不常用,只有插入、删除、查找、比较常用。

 // 单个数据插⼊,如果已经存在则插⼊失败pair<iterator,bool> insert (const value_type& val);// 列表插⼊,已经在容器中存在的值不会插⼊void insert (initializer_list<value_type> il);// 迭代器区间插⼊,已经在容器中存在的值不会插⼊template <class InputIterator>void insert (InputIterator first, InputIterator last);// 查找val,返回val所在的迭代器,没有找到返回end() 
iterator find (const value_type& val);// 查找val,返回Val的个数size_type count (const value_type& val) const;// 删除⼀个迭代器位置的值iterator  erase (const_iterator position);// 删除val,val不存在返回0,存在返回1 
size_type erase (const value_type& val);// 删除⼀段迭代器区间的值iterator  erase (const_iterator first, const_iterator last);// 返回⼤于等val位置的迭代器iterator lower_bound (const value_type& val) const;// 返回⼤于val位置的迭代器iterator upper_bound (const value_type& val) const;

set 的插入

        set容器额普通插入的用法

int main()
{//set插入使用样例set<int> s;s.insert(6);s.insert(8);s.insert(5);s.insert(2);s.insert(9);for (auto e : s){cout << e << " ";}cout << endl;//输出2 5 6 8 9return 0;
}

set是有去重功能的,当插入数据有重复数据的时候就会自动去重。

int main()
{//set插入使用样例set<int> s;s.insert(6);s.insert(8);s.insert(5);s.insert(2);s.insert(2);s.insert(9);for (auto e : s){cout << e << " ";}cout << endl;//输出 2 5 6 8 9return 0;
}

可以插入列值表,插入列值表也是会自动去重。

int main()
{set<int> s;s.insert({ 4,6,8,9,6,3 });for (auto e : s){cout << e << " ";}cout << endl;//输出 3,4,6,8,9return 0;
}

set的查找

int main()
{set<int> s;s.insert({ 4,6,8,9,6,3 });for (auto e : s){cout << e << " ";}cout << endl;int x = 0;cin >> x;auto  pos = s.find(x);if (pos != s.end()){cout << x << "存在" << endl;}else{cout << x << "不存在!" << endl;}return 0;}

利用count函数进行快速查找

int main()
{set<int> s;s.insert({ 4,6,8,9,6,3 });for (auto e : s){cout << e << " ";}cout << endl;int x = 0;cin >> x;if (s.count(x)){cout << x << "存在" << endl;		}else{cout << x << "不存在!" << endl;}return 0;}

查找区间数据

 int main(){std::set<int> myset;for (int i = 1; i < 10; i++)myset.insert(i * 10); // 10 20 30 40 50 60 70 80 90for (auto e : myset){cout << e << " ";}cout << endl;// 实现查找到的[itlow,itup)包含[30, 60]区间// 返回 >= 30 auto itlow = myset.lower_bound(30);// 返回 > 60 auto itup = myset.upper_bound(60);// 删除这段区间的值myset.erase(itlow, itup);for (auto e : myset){cout << e << " ";}cout << endl;return 0;}

set的删除

直接删除

int main()
{   set<int> s;s.insert({ 4,6,8,9,6,3 });for (auto e : s){cout << e << " ";}cout << endl;int x = 0;cin >> x;s.erase(x);for (auto e : s){cout << e << " ";}cout << endl;//假如要删除的数是4,输入4。直接删除4输出 3,6,8,9return 0;}

直接查找在利用迭代器删除x

	set<int> s;s.insert({ 4,6,8,9,6,3 });cin >> x;auto pos = s.find(x);if (pos != s.end()){s.erase(pos);}else{cout << x << "不存在!" << endl;}for (auto e : s){cout << e << " ";}cout << endl;

利用find和erase结合还可以进行查找数据把所查找的数据删除

int main()
{// 直接查找在利⽤迭代器删除xset<int> s;s.insert({ 4,6,8,9,6,3 });int x = 0;cin >> x;auto pos = s.find(x);if (pos != s.end()){s.erase(pos);}else{cout << x << "不存在!" << endl;}for (auto e : s){cout << e << " ";}cout << endl;return 0;
}

2.4 multiset和set的差异

multiset和set的使用基本完全类似,主要区别点在于multiset支持值冗余,那么
insert/find/count/erase都围绕着支持值冗余有所差异,具体参看下面的样例代码理解。

int main()
{multiset<int> s;s.insert({ 4,7,9,1,6,6,7 });for (auto e : s){cout << e << " ";}cout << endl;//输出1 4 6 6 7 7 9return 0;
}

相⽐set不同的是,x可能会存在多个,find查找中序的第⼀个

int main()
{   multiset<int> s;s.insert({ 4,7,9,1,6,6,7 });int x;cin >> x;auto pos = s.find(x);while (pos != s.end() && *pos == x){cout << *pos << " ";++pos;}cout << endl;cout << s.count(x) << endl;
}	
    // 相⽐set不同的是,count会返回x的实际个数multiset<int> s;s.insert({ 4,7,9,1,6,6,7 });cout << s.count(x) << endl;
	// 相⽐set不同的是,erase给值时会删除所有的xmultiset<int> s;s.insert({ 4,7,9,1,6,6,7 });s.erase(x);for (auto e : s){cout << e << " ";}cout << endl;return 0;

3、map

map的声明如下,Key就是map底层关键字的类型,T是map底层value的类型,set默认要求Key支持小于比较,如果不支持或者需要的话可以自行实现仿函数传给第二个模版参数,map底层存储数据的内存是从空间配置器申请的。一般情况下,我们都不需要传后两个模版参数。map底层是用红黑树实现,增删查改效率是 ,迭代器遍历是走O(logN) 的中序,所以是按key有序顺序遍历的。

template < class Key,                   // map::key_typeclass T,                     // map::mapped_typeclass Compare = less<Key>,   // map::key_compareclass Alloc = allocator<pair<const Key,T> > //map::allocator_type> class map;

3 .1 pair类型

map底层的红⿊树节点中的数据,使⽤pair<Key,T>存储键值对数据。

 

 typedef pair<const Key, T> value_type;template <class T1, class T2>struct pair 
{// map::key_type// map::mapped_type// map::key_comparetypedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair(): first(T1()), second(T2()){}pair(const T1& a, const T2& b): first(a), second(b){}template<class U, class V> pair (const pair<U,V>& pr): first(pr.first), second(pr.second){}};template <class T1,class T2>inline pair<T1,T2> make_pair (T1 x, T2 y){return ( pair<T1,T2>(x,y) );}

3.2 map的构造

map的支持正向和反向迭代遍历,遍历默认按key的升序顺序,因为底层是二叉搜索树,迭代器遍历走的中序;支持迭代器就意味着支持范围for,map支持修改value数据,不支持修改key数据,修改关键字数据,破坏了底层搜索树的结构。

// empty (1) ⽆参默认构造explicit map (const key_compare& comp = key_compare(),const allocator_type& alloc = allocator_type());// range (2) 迭代器区间构造template <class InputIterator>map (InputIterator first, InputIterator last,const key_compare& comp = key_compare(),const allocator_type& = allocator_type());// copy (3) 拷⻉构造map (const map& x);// initializer list (5) initializer 列表构造map (initializer_list<value_type> il,const key_compare& comp = key_compare(),const allocator_type& alloc = allocator_type());// 迭代器是⼀个双向迭代器iterator   -> a bidirectional iterator to const value_type// 正向迭代器iterator begin();iterator end();// 反向迭代器reverse_iterator rbegin();reverse_iterator rend();

3.3 map的增删查

map增接口,插入的pair键值对数据,跟set所有不同,但是查和删的接口只用关键字key跟set是完全类似的,不过find返回iterator,不仅仅可以确认key在不在,还找到key映射的value,同时通过迭代还可以修改value

Member typeskey_type     -> The first template parameter (Key)mapped_type  -> The second template parameter (T)value_type   -> pair<const key_type,mapped_type>// 单个数据插⼊,如果已经key存在则插⼊失败,key存在相等value不相等也会插⼊失败pair<iterator,bool> insert (const value_type& val);// 列表插⼊,已经在容器中存在的值不会插⼊void insert (initializer_list<value_type> il);// 迭代器区间插⼊,已经在容器中存在的值不会插⼊template <class InputIterator>void insert (InputIterator first, InputIterator last);// 查找k,返回k所在的迭代器,没有找到返回end() 
iterator find (const key_type& k);// 查找k,返回k的个数size_type count (const key_type& k) const;// 删除⼀个迭代器位置的值iterator  erase (const_iterator position);// 删除k,k存在返回0,存在返回1 
size_type erase (const key_type& k);// 删除⼀段迭代器区间的值iterator  erase (const_iterator first, const_iterator last);// 返回⼤于等k位置的迭代器iterator lower_bound (const key_type& k);// 返回⼤于k位置的迭代器const_iterator lower_bound (const key_type& k) const;

map的构造遍历

int main()
{// initializer_list构造及迭代遍历map<string, string> dict = { {"left", "左边"}, {"right", "右边"},{"insert", "插⼊"},{ "string", "字符串" } };//map<string, string>::iterator it = dict.begin();auto it = dict.begin();while (it != dict.end()){//cout << (*it).first <<":"<<(*it).second << endl;// map的迭代基本都使⽤operator->,这⾥省略了⼀个->// 第⼀个->是迭代器运算符重载,返回pair*,第⼆个箭头是结构指针解引⽤取pair数据//cout << it.operator->()->first << ":" << it.operator->()>second << endl;cout << it->first << ":" << it->second << endl;++it;}cout << endl;return 0;
}

  map的插入

using namespace std;
int main()
{//四种插入方式map<string, string> dict;pair<string, string> kv1("first", "第一个");dict.insert(kv1);dict.insert(pair < string, string>("second", "第二个"));dict.insert(make_pair("sort", "排序"));dict.insert({ "auto","自动的" });for (const auto& e : dict){cout << e.first << ":" << e.second << endl;}cout << endl;return 0;
}

map的删除

string str;while (cin >> str){auto ret = dict.find(str);if (ret != dict.end()){cout << "->" << ret->second << endl;}else{cout << "⽆此单词,请重新输⼊" << endl;}}// erase等接⼝跟set完全类似,这⾥就不演⽰讲解了return 0;}

map的查找

可以利用find,也可以用operator[]。和operator[]的一些其他功能,如插入修改查找。

int main()
{map<string, string> dict;dict.insert({ "sort","排序" });//插入dict["auto"];//插入加修改dict["left"] = "左边";//key存在 查找dict["left"];auto it = dict.begin();while (it!= dict.end()){	cout << it->first << ":" << it->second << endl;++it;}return 0;
}

3.4 map的数据修改

Member types
key_type -> The first template parameter (Key)
mapped_type -> The second template parameter (T)
value_type -> pair<const key_type,mapped_type>

map支持修改mapped_type 数据,不支持修改key数据,修改关键字数据,破坏了底层搜
索树的结构。
map第一个支持修改的方式时通过迭代器,迭代器遍历时或者find返回key所在的iterator修改,map还有一个非常重要的修改接口operator[ ],但是operator[ ]不仅仅支持修改,还支持插入数据和查找数据,所以他是一个多功能复合接口
需要注意从内部实现角度,map这里把我们传统说的value值,给的是T类型,typedef为
mapped_type。而value_type是红黑树结点中存储的pair键值对值。日常使用我们还是习惯将这里的T映射值叫做value。


pair<iterator,bool> insert (const value_type& val);

insert插入一个一个pairkey,T>对象。如果key在map中,就插入失败,返回一个pair<iterator,bool>对象,返回pair对象first是key所在节点的迭代器,second是false。如果key不在map中,就插入成功,返回一个pair<iterator,bool>对象,返回的pair对象first是新插入节点的迭代器,second是true。

不管是插入成功还是失败,都会返回pair对象first所指的key所在的迭代器。如果插入失败就充当查找的功能,所以也是这一点insert可以实现operator[]。

 注意:两个pair,一个是map底层红黑树节点存在的pair<key,T>,另一个是insert的返回值pair<iterator,bool>。


operator[ ]

mapped_type& operator[] (const key_type& k);// operator的内部实现
mapped_type& operator[] (const key_type& k)
{pair<iterator, bool> ret = insert({ k, mapped_type() });iterator it = ret.first;return it->second;
}

如果k不在map中,insert就会插入k和mapped_typed的值。然后返回[]节点中存储mapped_type值的引用,可以通过引用修改映射值。[]具备了插入修改的功能。

如果k在map中,insert会插⼊失败,但是insert返回pair对象的first是指向key结点的迭代器,返回值同时[]返回结点中存储mapped_type值的引⽤,所以[]具备了查找+修改的功能。

3.5 multimap和map的差异

multimap和map的使用基本完全类似,主要区别点在于multimap支持关键值key冗余,那么
insert/find/count/erase都围绕着支持关键值key冗余有所差异,这里跟set和multiset完全一样,比如find时,有多个key,返回中序第一个。其次就是multimap不支持[],因为支持key冗余,[]就只能支持插入了,不能支持修改。


本篇完,下篇见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483109.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java基础概念46-数据结构1

一、引入 List集合的三种实现类使用了不同的数据结构&#xff01; 二、数据结构的定义 三、常见的数据结构 3-1、栈 特点&#xff1a;先进后出&#xff0c;后进先出。 java内存容器&#xff1a; 3-2、队列 特点&#xff1a;先进先出、后进后出。 栈VS队列-小结 3-3、数组 3-…

Docker:在 ubuntu 系统上生成和加载 Docker 镜像

本文将介绍在 ubuntu系统上进行 Docker 镜像的生成和加载方法和代码。 文章目录 一、下载和安装 docker二、加载 docker 文件三、保存你的镜像四、将镜像上传到云端并通过连接下载和加载 Docker 镜像五、Docker 容器和本地的文件交互5.1 从容器复制文件到本地宿主机5.1.1 单个文…

《数据挖掘:概念、模型、方法与算法(第三版)》

嘿&#xff0c;数据挖掘的小伙伴们&#xff01;今天我要给你们介绍一本超级实用的书——《数据挖掘&#xff1a;概念、模型、方法与算法》第三版。这本书是数据挖掘领域的经典之作&#xff0c;由该领域的知名专家编写&#xff0c;系统性地介绍了在高维数据空间中分析和提取大量…

做异端中的异端 -- Emacs裸奔之路4: 你不需要IDE

确切地说&#xff0c;你不需要在IDE里面编写或者阅读代码。 IDE用于Render资源文件比较合适&#xff0c;但处理文本&#xff0c;并不划算。 这的文本文件&#xff0c;包括源代码&#xff0c;配置文件&#xff0c;文档等非二进制文件。 先说说IDE带的便利: 函数或者变量的自动…

【C++】编程题目分析与实现回顾:从浮点数运算到整型转换的全面解读

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目一&#xff1a;计算成绩问题分析与优化实现优化后的实现优势 &#x1f4af;题目二&#xff1a;浮点数向零舍入不同实现方式的比较1. 使用强制类型转换 (int)2. 使用标准…

时间表格Java

输入&#xff1a;XXX XXX 小时 分钟 输出&#xff1a; XXX&#xff1a;XXX ~ XXX: XXX XXX&#xff1a;XXX ~ XXX: XXX XXX&#xff1a;XXX ~ XXX: XXX 处理&#xff1a;间隔五分钟、区间45分钟 14:15 ~ 15:0 15:5 ~ 15:50 15:55 ~ 16:40 16:45 ~ 17:30 17:35 ~ 18:20…

Spring AOP 的实现和切点表达式的介绍

1. 快速入手 AOP&#xff1a;就是面相切面编程&#xff0c;切面指的就是某一类特定的问题&#xff0c;也可以理解为面相特定方法编程&#xff0c;例如之前使用的拦截器&#xff0c;就是 AOP 思想的一种应用&#xff0c;统一数据返回格式和统一异常处理也是 AOP 思想的实现方式…

shell脚本30个案例(五)

前言&#xff1a; 通过一个多月的shell学习&#xff0c;总共写出30个案例&#xff0c;分批次进行发布&#xff0c;这次总共发布了5个案例&#xff0c;希望能够对大家的学习和使用有所帮助&#xff0c;更多案例会在下期进行发布。 案例二十一、系统内核优化 1.问题&#xff1…

一文解析Kettle开源ETL工具!

ETL&#xff08;Extract, Transform, Load&#xff09;工具是用于数据抽取、转换和加载的软件工具&#xff0c;用于支持数据仓库和数据集成过程。Kettle作为传统的ETL工具备受用户推崇。本文就来详细说下Kettle。 一、Kettle是什么&#xff1f; Kettle 是一款开源的 ETL&#x…

IDEA使用HotSwapHelper进行热部署

目录 前言JDK1.8特殊准备DECVM安装插件安装与配置参考文档相关下载 前言 碰到了一个项目&#xff0c;用jrebel启动项目时一直报错&#xff0c;不用jrebel时又没问题&#xff0c;找不到原因&#xff0c;又不想放弃热部署功能 因此思考能否通过其他方式进行热部署&#xff0c;找…

使用无监督机器学习算法进行预测性维护

目录 一、说明 二、主成分分析&#xff08;PCA&#xff09; 三、 K-means方法 四、K-最近邻 (KNN) 五、密度的空间聚类 (DBSCAN) 六、更先进的预测性维护算法 6.1 独立成分分析 (ICA) 6.2 PCA 和 ICA 有什么区别&#xff1f; 6.3 OPTICS 聚类 6.4 自组织映射 (SOM) 6.5 局部敏…

Elasticsearch 进阶

核心概念 索引(Index) 一个索引就是一个拥有几分相似特征的文档的集合。比如说&#xff0c;你可以有一个客户数据的索引&#xff0c;另一个产品目录的索引&#xff0c;还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母)&#xff0c;并且当我们要对这个索…

107.【C语言】数据结构之二叉树求总节点和第K层节点的个数

目录 1.求二叉树总的节点的个数 1.容易想到的方法 代码 缺陷 思考:能否在TreeSize函数内定义静态变量解决size的问题呢? 其他写法 运行结果 2.最好的方法:分而治之 代码 运行结果 2.求二叉树第K层节点的个数 错误代码 运行结果 修正 运行结果 其他写法 1.求二…

vue2 虚拟DOM 和 真实DOM (概念、作用、Diff 算法)

虚拟 DOM 和 真实DOM&#xff08;概念、作用、Diff 算法&#xff09; 1.1 概念 真实 DOM&#xff08;Document Object Model&#xff09;&#xff1a;是浏览器中用于表示文档结构的树形结构。 <h2>你好</h2>虚拟DOM&#xff1a;用 JavaScript 对象来模拟真实 DOM…

Spring AI 框架介绍

Spring AI是一个面向人工智能工程的应用框架。它的目标是将Spring生态系统的设计原则&#xff08;如可移植性和模块化设计&#xff09;应用于AI领域&#xff0c;并推广使用pojo作为AI领域应用的构建模块。 概述 Spring AI 现在(2024/12)已经支持语言&#xff0c;图像&#xf…

matlab 中的 bug

在matlab中绘图&#xff0c;设置 axe 的背景颜色 axes_in3.Color #00235B ;打印的时候 print(figure_handle1,-dpng,-r300,"merge_yt_ey") ;此时保存的图片无法识别背景颜色 原因在于 matlab 中的 InverseHardcopy 将 InvertHardcopy 设置成 off 则可以解决这个问…

【数据库系列】Liquibase 与 Flyway 的详细对比

在现代软件开发中&#xff0c;数据库版本控制是一个至关重要的环节。为了解决数据库迁移和变更管理的问题&#xff0c;开发者们通常会使用工具&#xff0c;如 Liquibase 和 Flyway。本文将对这两个流行的数据库迁移工具进行详细比较&#xff0c;从基础概念、原理、优缺点到使用…

DVWA靶场通关——DOM型XSS漏洞

一、DOM型XSS攻击概述 DOM型XSS&#xff08;DOM-based Cross-Site Scripting&#xff0c;DOM XSS&#xff09;是一种跨站脚本攻击&#xff08;XSS&#xff09;的变种&#xff0c;它与传统的反射型XSS&#xff08;Reflected XSS&#xff09;或存储型XSS&#xff08;Stored XSS&a…

flink学习(14)—— 双流join

概述 Join:内连接 CoGroup&#xff1a;内连接&#xff0c;左连接&#xff0c;右连接 Interval Join&#xff1a;点对面 Join 1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。 2、Join 可以支持处理时间&#xff08;processing time&#xff09;和事件时…

设计模式——Facade(门面)设计模式

摘要 本文介绍了外观设计模式&#xff0c;这是一种通过简单接口封装复杂系统的设计模式。它简化了客户端与子系统之间的交互&#xff0c;降低了耦合度&#xff0c;并提供了统一的调用接口。文章还探讨了该模式的优缺点&#xff0c;并提供了类图实现和使用场景。 1. 外观设计模…