《Python基础》之Pandas库

目录

一、简介

二、Pandas的核心数据结构

1、Series

2、DataFrame

三、数据读取与写入

1、数据读取

 2、数据写入

四、数据清洗与处理

1、处理缺失值

2、处理重复值

3、数据转换

五、数据分析与可视化

1、统计描述

2、分组聚合

3、数据可视化

六、高级技巧

1、时间序列分析

2、数据透视表

七、总结


在数据科学的世界里,Python 的 Pandas 库无疑是一把瑞士军刀。无论你是数据分析师、数据科学家,还是机器学习工程师,Pandas 都是你不可或缺的工具。本文将带你深入了解 Pandas 库的核心功能、常用操作以及一些高级技巧,帮助你更好地利用这个强大的工具。

一、简介

Pandas 是一个开源的数据处理和分析库,由 Wes McKinney 在 2008 年创建。它建立在 NumPy 库之上,提供了高效、灵活的数据结构,使得数据操作和分析变得更加简单和直观。Pandas 主要的数据结构是 Series 和 DataFrame,分别用于处理一维和二维的数据。

二、Pandas的核心数据结构

1、Series

Series 是 Pandas 中的一维数组,类似于带标签的数组。每个元素都有一个标签(索引),可以通过标签访问数据。

import pandas as pd# 创建一个 Series
s = pd.Series([1, 3, 5, 7, 9], index=['a', 'b', 'c', 'd', 'e'])
print(s)

2、DataFrame

DataFrame 是 Pandas 中的二维表格数据结构,类似于电子表格或 SQL 表。它由行和列组成,每列可以是不同的数据类型。

# 创建一个 DataFrame
data = {'name': ['Alice', 'Bob', 'Charlie'],'age': [25, 30, 35],'city': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
print(df)

 

三、数据读取与写入

Pandas 支持从多种数据源读取数据,包括 CSV、Excel、SQL 数据库、JSON 等。同样,它也支持将数据写入这些格式。

1、数据读取

# 从 CSV 文件读取数据
df = pd.read_csv('data.csv')# 从 Excel 文件读取数据
df = pd.read_excel('data.xlsx')# 从 SQL 数据库读取数据
import sqlite3
conn = sqlite3.connect('database.db')
df = pd.read_sql('SELECT * FROM table_name', conn)

 2、数据写入

# 将数据写入 CSV 文件
df.to_csv('output.csv', index=False)# 将数据写入 Excel 文件
df.to_excel('output.xlsx', index=False)# 将数据写入 SQL 数据库
df.to_sql('table_name', conn, if_exists='replace', index=False)

四、数据清洗与处理

数据清洗是数据分析过程中非常重要的一步。Pandas 提供了丰富的功能来处理缺失值、重复值、异常值等。

1、处理缺失值

# 检查缺失值
print(df.isnull().sum())# 删除包含缺失值的行
df_cleaned = df.dropna()# 填充缺失值
df_filled = df.fillna(method='ffill')  # 前向填充
df_filled = df.fillna(method='bfill')  # 后向填充
df_filled = df.fillna(df.mean())      # 用均值填充

2、处理重复值

# 检查重复值
print(df.duplicated().sum())# 删除重复值
df_cleaned = df.drop_duplicates()

3、数据转换

# 数据类型转换
df['age'] = df['age'].astype(float)# 数据标准化
df['age'] = (df['age'] - df['age'].mean()) / df['age'].std()

五、数据分析与可视化

Pandas 提供了丰富的数据分析功能,包括统计描述、分组聚合、透视表等。结合 Matplotlib 和 Seaborn 等可视化库,可以轻松创建各种图表。

1、统计描述

# 统计描述
print(df.describe())# 计算相关系数
print(df.corr())

2、分组聚合

# 按城市分组并计算平均年龄
grouped = df.groupby('city')['age'].mean()
print(grouped)

3、数据可视化

import matplotlib.pyplot as plt
import seaborn as sns# 绘制柱状图
df['age'].plot(kind='bar')
plt.show()# 绘制散点图
sns.scatterplot(x='age', y='city', data=df)
plt.show()

六、高级技巧

1、时间序列分析

Pandas 提供了强大的时间序列处理功能,支持日期解析、时间差计算、重采样等。

# 创建时间序列数据
dates = pd.date_range('20230101', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))# 重采样
df_monthly = df.resample('M').mean()
print(df_monthly)

2、数据透视表

数据透视表是数据分析中非常有用的工具,Pandas 提供了 pivot_table 函数来创建透视表。

# 创建数据透视表
pivot_table = pd.pivot_table(df, values='age', index='city', columns='name', aggfunc='mean')
print(pivot_table)

七、总结

Pandas 是数据科学领域中不可或缺的工具,它提供了丰富的功能来处理、分析和可视化数据。无论你是初学者还是经验丰富的数据科学家,掌握 Pandas 都将极大地提升你的工作效率。希望本文能帮助你更好地理解和使用 Pandas,开启你的数据科学之旅。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483523.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】结构体(四)

本篇重点是typedef关键字 一,是什么? typedef用来定义新的数据类型,通常typedef与结构体的定义配合使用。 简单来说就是取别名 ▶ struct 是用来定义新的数据类型——结构体 ▶ typedef是给数据类型取别名。 二,为什么&#xf…

12月2日星期一今日早报简报微语报早读

12月2日星期一,农历十一月初二,早报#微语早读。 1、公安部:全国机动车所有人12月2日起均可申领电子行驶证; 2、2025年国考笔试开考:参考率约为86.7%,约65人录1人; 3、今日头条、拼多多等9款A…

Navicat连接SQL Server及SpringBoot连接SQL Server(jtds)

Navicat连接SQL Server 安装自带的SQL Server客户端 去到Navicat安装目录,找到安装程序,安装即可。 安装对应版本的Microsoft ODBC Driver for SQL Server 打开Navicat输入对应的SQL Server相关信息 然后点测试连接,提示连接成功。 Spr…

【机器学习】CatBoost 模型实践:回归与分类的全流程解析

一. 引言 本篇博客首发于掘金 https://juejin.cn/post/7441027173430018067。 PS:转载自己的文章也算原创吧。 在机器学习领域,CatBoost 是一款强大的梯度提升框架,特别适合处理带有类别特征的数据。本篇博客以脱敏后的保险数据集为例&#x…

用三维模型的顶点法向量计算法线贴图

法线贴图的核心概念是在不增加额外多边形数目的情况下,通过模拟细节来改善光照效果。具体流程包括: 法线的计算与存储:通过法线映射将三维法线向量转化为法线贴图的 RGB 值。渲染中的使用:在片段着色器中使用法线贴图来替代原有的…

Hadoop分布式文件系统(二)

目录 1. 引言1. Hadoop文件操作命令2. 部分常用的Hadoop FS Shell命令2.1 ls列出文件2.2 mkdir创建目录2.3 put上传文件2.4 cat查看文件2.5 get复制文件2.6 rm删除文件 3. Hadoop系统管理命令4. HDFS Java API 示例参考 1. 引言 大多数HDFS Shell命令的行为和对应的Unix Shell命…

ESP32-S3模组上跑通ES8388(13)

接前一篇文章:ESP32-S3模组上跑通ES8388(12) 二、利用ESP-ADF操作ES8388 2. 详细解析 上一回解析了es8388_init函数中的第6段代码,本回继续往下解析。为了便于理解和回顾,再次贴出es8388_init函数源码,在…

LearnOpenGL学习(光照 -- 颜色,基础光照,材质,光照贴图)

光照 glm::vec3 lightColor(0.0f, 1.0f, 0.0f); glm::vec3 toyColor(1.0f, 0.5f, 0.31f); glm::vec3 result lightColor * toyColor; // (0.0f, 0.5f, 0.0f); 说明:当我们把光源的颜色与物体的颜色值相乘,所得到的就是这个物体所反射的颜色。 创建…

Linux条件变量线程池详解

一、条件变量 【互斥量】解决了线程间同步的问题,避免了多线程对同一块临界资源访问产生的冲突,但同一时刻对临界资源的访问,不论是生产者还是消费者,都需要竞争互斥锁,由此也带来了竞争的问题。即生产者和消费者、消费…

Figma入门-自动布局

Figma入门-自动布局 前言 在之前的工作中,大家的原型图都是使用 Axure 制作的,印象中 Figma 一直是个专业设计软件。 最近,很多产品朋友告诉我,很多原型图都开始用Figma制作了,并且很多组件都是内置的,对…

威联通-001 手机相册备份

文章目录 前言1.Qfile Pro2.Qsync Pro总结 前言 威联通有两种数据备份手段:1.Qfile Pro和2.Qsync Pro,实践使用中存在一些区别,针对不同备份环境选择是不同。 1.Qfile Pro 用来备份制定目录内容的。 2.Qsync Pro 主要用来查看和操作文…

大R玩家流失预测在休闲社交游戏中的应用

摘要 预测玩家何时会离开游戏为延长玩家生命周期和增加收入贡献创造了独特的机会。玩家可以被激励留下来,战略性地与公司组合中的其他游戏交叉链接,或者作为最后的手段,通过游戏内广告传递给其他公司。本文重点预测休闲社交游戏中高价值玩家…

基于Java Springboot宠物咖微信小程序

一、作品包含 源码数据库全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信开发者工具 数…

ultralytics-YOLOv11的目标检测解析

1. Python的调用 from ultralytics import YOLO import os def detect_predict():model YOLO(../weights/yolo11n.pt)print(model)results model(../ultralytics/assets/bus.jpg)if not os.path.exists(results[0].save_dir):os.makedirs(results[0].save_dir)for result in…

蓝桥杯准备训练(lesson1,c++方向)

前言 报名参加了蓝桥杯(c)方向的宝子们,今天我将与大家一起努力参赛,后序会与大家分享我的学习情况,我将从最基础的内容开始学习,带大家打好基础,在每节课后都会有练习题,刚开始的练…

vscode 如何支持点击跳转函数,以C++为例,Python等其它编程语言同理,Visual Studio Code。

VScode(Visual Studio Code)按住Ctrl鼠标左键,没法跳转到对应的函数怎么办。 如下图所示 1、点击有四个小方块的图标 2、输入C(如果你的编程语言是C,其它的就输其它的) 3、找到C Extension(其它编程语言&#xff0…

【包教包会】CocosCreator3.x——重写Sprite,圆角、3D翻转、纹理循环、可合批调色板、不影响子节点的位移旋转缩放透明度

一、效果演示 重写Sprite组件,做了以下优化: 1、新增自变换,在不影响子节点的前提下位移、旋转、缩放、改变透明度 新增可合批调色板,支持色相、明暗调节 新增圆角矩形、3D透视旋转、纹理循环 所有功能均支持合批、原生平台&…

Java八股文(11-29start)

p1 缓存预热也要预热到布隆过滤器.过滤不存在的数据 布隆过滤器需要存储 添加数据的时候进行预热.布隆过滤器里面是位图结构,通过多个hash函数获得下标.改为1. 查询 id进行查询获得对应下标是否为1.可能会出现误判. 判断id是否存在. 穿透就是查询一个不存在的id.一直查询数…

【Gitlab】gitrunner并发配置

并发介绍 涉及到并发控制的一共有4个参数: concurrent , limit ,request_concurrency,parallel 全局的配置: [rootiZ2vc6igbukkxw6rbl64ljZ config]# vi config.toml concurrent 4 #这是一个总的全局控制,它限制了所有pipline,所有runner执行器…

智能运维在配电所设备监控中的应用与洞察

在配电所的设备监控中,智能运维正发挥着越来越重要的作用。通过对配电所内各关键设备的实时监测和数据分析,智能运维系统不仅提高了运维效率,还为我们提供了更深入的设备运行洞察。 一、设备监控概况 配电所内设有多个监测点,包括…