Java虚拟机面试题:内存管理(上)

🧑 博主简介:CSDN博客专家历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程高并发设计Springboot和微服务,熟悉LinuxESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea

在这里插入图片描述


在这里插入图片描述

Java虚拟机面试题:内存管理(上)

1. 能说一下 JVM 的内存区域吗?

按照 Java 的虚拟机规范,JVM 的内存区域(JVM 的内存结构/JVM 运行时数据区)可以细分为程序计数器虚拟机栈本地方法栈方法区等。

在这里插入图片描述

其中方法区是线程共享的,虚拟机栈本地方法栈程序计数器是线程私有的。

介绍一下程序计数器?

程序计数器(Program Counter Register)也被称为 PC 寄存器,是一块较小的内存空间。它可以看作是当前线程所执行的字节码行号指示器。

介绍一下 Java 虚拟机栈?

Java 虚拟机栈(Java Virtual Machine Stack),通常指的就是“栈”,它的生命周期与线程相同。

当线程执行一个方法时,会创建一个对应的栈帧,用于存储局部变量表操作数栈动态链接方法出口等信息,然后栈帧会被压入栈中。当方法执行完毕后,栈帧会从栈中移除。

在这里插入图片描述

一个什么都没有的空方法,完全空的参数什么都没有,那局部变量表里有没有变量?

对于静态方法,由于不需要访问实例对象(this),因此在局部变量表中不会有任何变量。

对于非静态方法,即使是一个完全空的方法,局部变量表中也会有一个用于存储 this 引用的变量。this 引用指向当前实例对象,在方法调用时被隐式传入。

比如说有这样一段代码:

public class VarDemo1 {public void emptyMethod() {// 什么都没有}public static void staticEmptyMethod() {// 什么都没有}
}

javap -v VarDemo1 命令查看编译后的字节码:

在非静态方法 emptyMethod 的输出中,你会看到类似这样的内容:

二哥的 Java 进阶之路:javap emptyMethod

这里的 locals=1 表示局部变量表有一个变量,即 this,Slot 0 位置存储了 this 引用。

而在静态方法 staticEmptyMethod 的输出中,你会看到类似这样的内容:

二哥的 Java 进阶之路:javap staticEmptyMethod

这里的 locals=0 表示局部变量表为空,因为静态方法没有 this 引用,也没有其他局部变量。

介绍一下本地方法栈?

本地方法栈(Native Method Stacks)与虚拟机栈相似,区别在于虚拟机栈是为 JVM 执行 Java 编写的方法服务的,而本地方法栈是为 Java 调用本地(native)方法服务的,由 C/C++ 编写。

在本地方法栈中,主要存放了 native 方法的局部变量、动态链接和方法出口等信息。当一个 Java 程序调用一个 native 方法时,JVM 会切换到本地方法栈来执行这个方法。

介绍一下本地方法栈的运行场景?

当 Java 应用需要与操作系统底层或硬件交互时,通常会用到本地方法栈。

比如调用操作系统的特定功能,如内存管理、文件操作、系统时间、系统调用等。

举例:System.currentTimeMillis() 就是调用本地方法来获取操作系统的当前时间。

二哥的Java 进阶之路:currentTimeMillis方法源码

再比如 JVM 自身的一些底层功能也需要通过本地方法来实现。像 Object 类中的 hashCode() 方法、clone() 方法等。

二哥的Java 进阶之路:hashCode方法源码

native 方法解释一下?

Native 方法是在 Java 中通过 native 关键字声明的,用于调用非 Java 语言(如 C/C++)编写的代码。Java 可以通过 JNI(Java Native Interface)与底层系统、硬件设备、或高性能的本地库进行交互。

介绍一下 Java 堆?

堆是 JVM 中最大的一块内存区域,被所有线程共享,在 JVM 启动时创建,主要用来存储对象的。

在这里插入图片描述

Java 中“几乎”所有的对象都会在堆中分配,堆也是垃圾收集器管理的目标区域,因此一些资料中也会把 Java 堆称作“GC 堆”(Garbage Collected Heap)。

从内存回收的角度来看,由于垃圾收集器大部分都是基于分代收集理论设计的,所以堆也会被划分为新生代老年代Eden空间From Survivor空间To Survivor空间等。

在这里插入图片描述

但随着JIT 编译器的发展和逃逸技术的逐渐成熟,“所有的对象都会分配到堆上”就不再那么绝对了。

从 JDK 7 开始,JVM 已经默认开启逃逸分析了,意味着如果某些方法中的对象引用没有被返回或者未被方法体外使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存。

堆和栈的区别是什么?

堆属于线程共享的内存区域,几乎所有的对象都在堆上分配,生命周期不由单个方法调用所决定,可以在方法调用结束后继续存在,直到不再被任何变量引用,然后被垃圾收集器回收。

栈属于线程私有的内存区域,主要存储局部变量、方法参数、对象引用等,通常随着方法调用的结束而自动释放,不需要垃圾收集器处理。

介绍一下方法区?

方法区并不真实存在,属于 Java 虚拟机规范中的一个逻辑概念,用于存储已被 JVM 加载的类信息、常量、静态变量、即时编译器编译后的代码缓存等。

在 HotSpot 虚拟机中,方法区的实现称为永久代(PermGen),但在 Java 8 及之后的版本中,已经被元空间(Metaspace)所替代。

变量存在堆栈的什么位置?

对于局部变量来说,它存储在当前方法的栈帧中的局部变量表中。当方法执行完毕,栈帧被回收,局部变量也会被释放。

public void method() {int localVar = 100;  // 局部变量,存储在栈帧中的局部变量表里
}

对于静态变量来说,它存储在 Java 规范中的方法区中,也就是元空间(Metaspace)。

public class StaticVarDemo {public static int staticVar = 100;  // 静态变量,存储在方法区中
}

2. 说一下 JDK1.6、1.7、1.8 内存区域的变化?

JDK1.6、1.7/1.8 内存区域发生了变化,主要体现在方法区的实现:

  • JDK1.6 使用永久代实现方法区:

在这里插入图片描述

  • JDK1.7 时发生了一些变化,将字符串常量池、静态变量,存放在堆上

在这里插入图片描述

  • 在 JDK1.8 时彻底干掉了永久代,而在直接内存中划出一块区域作为元空间,运行时常量池、类常量池都移动到元空间。

在这里插入图片描述

3. 为什么使用元空间替代永久代作为方法区的实现?

Java 虚拟机规范规定的方法区只是换种方式实现。有客观和主观两个原因。

  • 客观上使用永久代来实现方法区的决定的设计导致了 Java 应用更容易遇到内存溢出的问题(永久代有-XX:MaxPermSize 的上限,即使不设置也有默认大小,而 J9 和 JRockit 只要没有触碰到进程可用内存的上限,例如 32 位系统中的 4GB 限制,就不会出问题),而且有极少数方法 (例如 String::intern())会因永久代的原因而导致不同虚拟机下有不同的表现。

  • 主观上当 Oracle 收购 BEA 获得了 JRockit 的所有权后,准备把 JRockit 中的优秀功能,譬如 Java Mission Control 管理工具,移植到 HotSpot 虚拟机时,但因为两者对方法区实现的差异而面临诸多困难。考虑到 HotSpot 未来的发展,在 JDK 6 的 时候 HotSpot 开发团队就有放弃永久代,逐步改为采用本地内存(Native Memory)来实现方法区的计划了,到了 JDK 7 的 HotSpot,已经把原本放在永久代的字符串常量池、静态变量等移出,而到了 JDK 8,终于完全废弃了永久代的概念,改用与 JRockit、J9 一样在本地内存中实现的元空间(Meta-space)来代替,把 JDK 7 中永久代还剩余的内容(主要是类型信息)全部移到元空间中。

4. 对象创建的过程了解吗?

当我们使用 new 关键字创建一个对象的时候,JVM 首先会检查 new 指令的参数是否能在常量池中定位到一个类的符号引用,然后检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,就先执行相应的类加载过程。

如果已经加载,JVM 会为新生对象分配内存,内存分配完成之后,JVM 将分配到的内存空间初始化为零值(成员变量,数值类型是 0,布尔类型是 false,对象类型是 null),接下来设置对象头,对象头里包含了对象是哪个类的实例、对象的哈希码、对象的 GC 分代年龄等信息。

最后,JVM 会执行构造方法(<init>),将成员变量赋值为预期的值,这样一个对象就创建完成了。

在这里插入图片描述

对象的销毁过程了解吗?

对象创建完成后,就可以通过引用来访问对象的方法和属性,当对象不再被任何引用指向时,对象就会变成垃圾。

垃圾收集器会通过可达性分析算法判断对象是否存活,如果对象不可达,就会被回收。

垃圾收集器会通过标记清除、标记复制、标记整理等算法来回收内存,将对象占用的内存空间释放出来。

常用的垃圾收集器有 CMS、G1、ZGC 等,它们的回收策略和效率不同,可以根据具体的场景选择合适的垃圾收集器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502841.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测试用例颗粒度说明

当我们在编写测试用例时&#xff0c;总是会遇到一个问题&#xff1a;如何确定测试用例的颗粒度&#xff1f;测试用例过于粗糙&#xff0c;可能无法全面覆盖系统的细节&#xff1b;而颗粒度过细&#xff0c;又会导致测试重复、冗余。掌握合适的颗粒度&#xff0c;不仅可以提高测…

【C++】深入解析二维数组初始化与越界问题

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;问题代码背景问题现象 &#x1f4af;初步分析与发现的问题1. 二维数组的初始化问题补充说明 2. 数组越界访问为什么数组越界问题没有直接报错&#xff1f; &#x1f4af;解…

Unity性能优化总结

目录 前言 移动端常见性能优化指标​编辑 包体大小优化 FPS CPU占用率 GPU占用率 内存 发热和耗电量 流量优化 前言 终于有时间了&#xff0c;我将在最近两个项目中进行优化的一些经验进行归纳总结以飨读者。因为我习惯用思维导图&#xff0c;所以归纳的内容主要以图来…

用QT实现 端口扫描工具1

安装在线QT&#xff0c;尽量是完整地自己进行安装&#xff0c;不然会少包 参考【保姆级图文教程】QT下载、安装、入门、配置VS Qt环境-CSDN博客 临时存储空间不够。 Windows系统通常会使用C盘来存储临时文件。 修改临时文件存储位置 打开系统属性&#xff1a; 右键点击“此电…

鸿蒙HarmonyOS开发:基于Swiper组件和自定义指示器实现多图片进度条轮播功能

文章目录 一、概述1、场景介绍2、技术选型 二、实现方案1、图片区域实现2、底部导航点设计3、手动切换 三、所有代码1、设置沉浸式2、外层Tabs效果3、ImageSwiper组件 四、效果展示 一、概述 在短视频平台上&#xff0c;经常可以见到多图片合集。它的特点是&#xff1a;由多张…

【JVM】总结篇-类的加载篇之 类的加载器 和ClassLoader分析

文章目录 类的加载器ClassLoader自定义类加载器双亲委派机制概念源码分析优势劣势如何打破Tomcat 沙箱安全机制JDK9 双亲委派机制变化 类的加载器 获得当前类的ClassLoader clazz.getClassLoader() 获得当前线程上下文的ClassLoader Thread.currentThread().getContextClassLoa…

nginx学习之路-nginx配置https服务器

文章目录 1. 生成证书2. 配置证书1. 拷贝证书文件2. 修改conf/nginx.conf文件内容 3. 查看效果1. 重载配置2. 访问 1. 生成证书 在linux系统下执行&#xff0c;使用openssl命令。&#xff08;windows环境也可以使用cmder&#xff09; # 1. 生成私钥 server2025.key(无密码保护…

鸿蒙应用开发搬砖经验之—使用DevTools工具调试前端页面

环境说明&#xff1a; 系统环境&#xff1a;Mac mini M2 14.5 (23F79) 开发IDE&#xff1a;DevEco Studio 5.0.1 Release 配置步骤&#xff1a; 按着官方的指引来慢慢一步一步来&#xff0c;但前提是要配置好SDK的路径&#xff08;没有配置的话&#xff0c;可能先看下面的配…

【NLP高频面题 - 分布式训练篇】ZeRO主要为了解决什么问题?

【NLP高频面题 - 分布式训练篇】ZeRO主要为了解决什么问题&#xff1f; 重要性&#xff1a;★★ 零冗余优化器技术由 DeepSpeed 代码库提出&#xff0c;主要用于解决数据并行中的模型冗余问题&#xff0c;即每张 GPU 均需要复制一份模型参数。 ZeRO的全称是Zero Redundancy …

《探秘计算机视觉与深度学习:开启智能视觉新时代》

《探秘计算机视觉与深度学习&#xff1a;开启智能视觉新时代》 一、追溯起源&#xff1a;从萌芽到崭露头角二、核心技术&#xff1a;解锁智能视觉的密码&#xff08;一&#xff09;卷积神经网络&#xff08;CNN&#xff09;&#xff1a;图像识别的利器&#xff08;二&#xff0…

[paddle] 非线性拟合问题的训练

利用paddlepaddle建立神经网络&#xff0c;模拟有限个数据的非线性拟合 本文仍然考虑 f ( x ) sin ⁡ ( x ) x f(x)\frac{\sin(x)}{x} f(x)xsin(x)​ 函数在区间 [-10,10] 上固定数据的拟合。 import paddle import paddle.nn as nn import numpy as np import matplotlib.…

详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)

GPT-3 FAMILY LARGE LANGUAGE MODELS Information Extraction 自然语言处理信息提取任务&#xff08;NLP-IE&#xff09;&#xff1a;从非结构化文本数据中提取结构化数据&#xff0c;例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处…

逆向入门(2)C篇-基础知识

C基础 1、在C中&#xff0c;函数的变量是从右往左传递的&#xff0c;也就是test(x,y)&#xff0c;先传入y&#xff0c;再传x。 2、变量的分类&#xff1a; &#xff08;1&#xff09;全局变量。在编译的时候就已经确定了内存地址和宽度&#xff0c;变量名就是内存地址的别名…

服务器数据恢复—离线盘数超过热备盘数导致raidz阵列崩溃的数据恢复

服务器数据恢复环境&故障&#xff1a; 一台配有32块硬盘的服务器在运行过程中突然崩溃不可用。经过初步检测&#xff0c;基本上确定服务器硬件不存在物理故障。管理员重启服务器后问题依旧。需要恢复该服务器中的数据。 服务器数据恢复环境&#xff1a; 1、将服务器中硬盘…

Echart实现3D饼图示例

在可视化项目中&#xff0c;很多地方会遇见图表&#xff1b;echart是最常见的&#xff1b;这个示例就是用Echart&#xff0c; echart-gl实现3D饼图效果&#xff0c;复制即可用 //需要安装&#xff0c;再引用依赖import * as echarts from "echarts"; import echar…

PostgreSQL学习笔记(一):PostgreSQL介绍和安装

目录 概念 PostgreSQL简介 PostgreSQL的关键特性 1. 标准兼容性 2. 扩展性 3. 数据完整性和可靠性 4. 丰富的数据类型 5. 查询能力 6. 事务和并发控制 7. 扩展和插件 8. 跨平台和多语言支持 9. 高可用性和扩展性 常用场景 安装 Linux apt安装 下载安装包安装 客…

Linux之信号量

目录 信号量 信号量相关接口 创建信号量 初始化信号量 等待信号量&#xff0c;P操作 发布信号量&#xff0c;V操作 销毁信号量 基于信号量的环形队列下的生产者和消费者模型 环形队列 代码实现 上期我们学习了线程同步的概念&#xff0c;掌握了基于阻塞队列的生产…

Redis--高可用(主从复制、哨兵模式、分片集群)

高可用&#xff08;主从复制、哨兵模式、分片集群&#xff09; 高可用性Redis如何实现高可用架构&#xff1f;主从复制原理1. 全量同步2. 命令传播3. 增量同步 Redis Sentinel&#xff08;哨兵模式&#xff09;为什么要有哨兵模式&#xff1f;哨兵机制是如何工作的&#xff1f;…

常用的数据结构API概览

List ArrayList 1、在初始化一个ArrayList的时候&#xff0c;如果我想同时set一些值 比如存放int[ ] List<int[]> list new ArrayList(Arrays.asList(new int[]{intervals[0][0],intervals[0][1]}));//或者int[] temp new int[]{intervals[0][0],intervals[0][1]}…

wordpress右侧浮动咨询台插件

简洁实用&#xff0c;操作方便&#xff0c;没有复杂的设置。 下载、安装、启用&#xff0c;即可使用。 wordpress在线客服插件-CS4&#xff0c;该插件适用于简站主题与精智主题。 下载 https://www.jianzhanpress.com/?p4622