【数据可视化-11】全国大学数据可视化分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【数据可视化-11】全国大学数据可视化分析

  • 一、引言
  • 二、导入分析库与数据清洗
  • 三、pyecharts可视化实践
    • 3.1 高校地理分布图
    • 3.2 全国不同类型大学数量情况
    • 3.3 高校类型与层次分析图
    • 3.4 全国不同大学隶属情况
    • 3.5 高校的坐标点位分析
  • 四、结论与展望

一、引言

  本文将带你一起探索一份全国高校数据集,通过pyecharts这一强大的Python可视化库,将抽象的数据转化为直观的图表,揭示高校分布、类型、层次以及各类标签(如985、211、双一流)之间的关联与差异。

二、导入分析库与数据清洗

  导入相应的分析库并进行数据加载。

import pandas as pd
from collections import Counter
###画图
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.globals import ThemeType
from pyecharts.charts import Bar, Pie, Timeline
from pyecharts.faker import Fakerdf = pd.read_csv("全国大学数据.csv",encoding='gbk')
df.head()

  数据具体的格式如下:

  对省份字段进行标准化处理:

province_mapping = {'北京':"北京市",'天津':"天津市",'河北':"河北省",'山西':"山西省",'内蒙古':"内蒙古自治区",'辽宁':"辽宁省"...
}df['省份'] = df['省份'].map(province_mapping)

三、pyecharts可视化实践

3.1 高校地理分布图

  使用pyecharts的Map组件,我们可以直观地展示全国高校的地理分布情况。通过颜色深浅或图标大小来反映各省份高校数量的多少,让读者一眼就能看出哪些地区是高等教育的重镇。同时,结合交互功能,读者可以点击地图上的省份,查看详细的高校列表。

from pyecharts.charts import Map
from pyecharts import options as opts
import pandas as pd# 假设df为预处理后的DataFrame
province_counts = df['省份'].value_counts().reset_index()
province_counts.columns = ['省份', '高校数量']map_chart = (Map().add("高校数量", [list(z) for z in zip(province_counts['省份'], province_counts['高校数量'])], "china").set_global_opts(title_opts=opts.TitleOpts(title="全国高校地理分布"),visualmap_opts=opts.VisualMapOpts(max_=max(province_counts['高校数量'])),)
)
map_chart.render("高校地理分布图.html")

  从图中我们可以发现高校数量最多是江苏省,拥有168所搞笑;长三角地区的高校明显高于其它地区,中部四川省高校最多,南部广东省高校最多,西部地区高校分布的数量相对较少;

3.2 全国不同类型大学数量情况

un_type = df['类型'].tolist()
result = Counter(un_type)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]# 链式调用
bar = (Bar(init_opts=opts.InitOpts(  # 初始配置项theme=ThemeType.MACARONS,animation_opts=opts.AnimationOpts(animation_delay=1000, animation_easing="cubicOut"  # 初始动画延迟和缓动效果))).add_xaxis(xaxis_data=key)  # x轴.add_yaxis(series_name="全国不同类型大学数量情况", y_axis=value)  # y轴.set_global_opts(title_opts=opts.TitleOpts(title='', subtitle='',  # 标题配置和调整位置title_textstyle_opts=opts.TextStyleOpts(font_family='SimHei', font_size=25, font_weight='bold', color='red',), pos_left="90%", pos_top="10",),xaxis_opts=opts.AxisOpts(name='类型', axislabel_opts=opts.LabelOpts(rotate=45)),# 设置x名称和Label rotate解决标签名字过长使用yaxis_opts=opts.AxisOpts(name='数量'),))
bar.render("全国不同类型大学数量情况.html")


  从图中我们可以发现理工类和综合类的院校最多,也就是高考时理科照生多的原因;

3.3 高校类型与层次分析图

  接下来,我们利用PieBar组件来分析高校的类型与层次。通过饼图展示公办与民办高校的占比,通过条形图展示本科与专科高校的分布情况。这些图表不仅能够帮助我们了解高校的构成,还能揭示不同类型与层次高校之间的差异。

attr = df['公或民办'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
pie = (Pie().add("公或民办类型数量",[list(z) for z in zip(key, value)],rosetype="radius",radius=["30%", "55%"],).set_global_opts(title_opts=opts.TitleOpts("公或民办类型数量"))
)
pie.render("公办与民办高校占比图.html")


  从图书可以看出高校有三种出资方式,分别是公办、民办和中外合作办学;其中公办的高校最多有2010所。

# 分析本科与专科高校的分布情况
undergraduate_vocational_distribution = df['本或专科'].value_counts()
undergraduate_vocational_distribution = undergraduate_vocational_distribution.reset_index()
undergraduate_vocational_distribution.columns = ['层次', '数量']# 创建条形图展示本科与专科高校的分布情况
bar_chart = (Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)).add_xaxis(undergraduate_vocational_distribution['层次'].tolist()).add_yaxis("高校数量", undergraduate_vocational_distribution['数量'].tolist()).set_global_opts(title_opts=opts.TitleOpts(title="本科与专科高校分布情况"),xaxis_opts=opts.AxisOpts(name="层次"),yaxis_opts=opts.AxisOpts(name="数量"),)
)
bar_chart.render("本科与专科高校分布图.html")


  从图中可以发现高校中本科和专科数据差不多持平。

3.4 全国不同大学隶属情况

  最后,我们利用ScatterGraph组件分析城市与高校之间的关联。通过散点图展示各城市高校的数量与分布,或者通过关系图展示城市与高校之间的隶属关系。

attr = data['隶属于'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
c = (Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK)).add_xaxis(xaxis_data=key).add_yaxis("数量", y_axis=value).set_global_opts(title_opts=opts.TitleOpts(title="全国不同大学隶属情况"),datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],))
c.render_notebook()

  从图中可以看到各个不同单位管理高校的数量,其中河南省管理的高校数量最多,教育部直属管的高校有84所等

3.5 高校的坐标点位分析

  可以使用百度的地名地址解析接口,将高校的地址转成经纬度,经纬度转成热力图如下;

四、结论与展望

  通过本次全国高校数据集的可视化探索,我们不仅直观地展示了高校的地理分布、类型与层次、标签情况以及与城市的关联,还深刻理解了数据可视化的力量。它让我们能够以前所未有的方式洞察数据背后的故事,为教育决策提供了有力的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502875.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ceph集群配置

4台机器 高度可扩展,分布式的存储文件系统,旨在提供高性能,高可靠性和高可用的对象存储,块存储,文件系统的存储。 使用分布式的算法保证数据的高可用和一致性。 ceph的架构: 1、ceph minitor MON&…

winform中使用panuon开源UI库的问题

在 WinForms 中使用 Panuon UI 是一种提高应用程序用户界面美观和交互性的方式。Panuon UI 是一个用于 .NET 应用程序的现代化 UI 库,它提供了一些非常好看的控件,能够让 WinForms 应用程序看起来更现代。 But------------------------------------&…

【Uniapp-Vue3】swiper滑块视图容器的用法

我们使用swiper标签就可以实现轮播图的效果。 一、swiper组件的结构 整体的轮播图使用swiper标签&#xff0c;轮播的每一页使用swiper-item标签。 <template><swiper class"swiper"><swiper-item><view class"swiper-item">111…

Which CAM is Better for Extracting Geographic Objects? A Perspective From参考文献

参考文献列表 [1] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431–3440. 中文翻译&#xff1a;[1] 谢尔哈默, E., 龙, J., & 达雷尔, T. (2015).…

【C++项目实战】类和对象入门实践:日期类实现万字详解

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C项目实战》 期待您的关注 ​ 目录 引言 介绍 一、类的设计 二、成员函数的实现 &#x1f343;构造函数、析构函数、拷贝构造…

基于32单片机的智能语音家居

一、主要功能介绍 以STM32F103C8T6单片机为控制核心&#xff0c;设计一款智能远程家电控制系统&#xff0c;该系统能实现如下功能&#xff1a; 1、可通过语音命令控制照明灯、空调、加热器、窗户及窗帘的开关&#xff1b; 2、可通过手机显示和控制照明灯、空调、窗户及窗帘的开…

hot100_54. 螺旋矩阵

hot100_54. 螺旋矩阵 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5] 示例 2&#xff1a; 输入&am…

HTML5实现好看的博客网站、通用大作业网页模板源码

HTML5实现好看的博客网站、通用大作业网页模板源码 前言一、设计来源1.1 主界面1.2 列表界面1.3 文章界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现好看的博客网站、通用大作业网页模板源码&#xff0c;博客网站源码&#xff0c;HTML模板源码&#xff0…

移动硬盘无法访问:全面解析、恢复方案与预防策略

描述移动硬盘无法访问现象 在日常的数据存储和传输过程中&#xff0c;移动硬盘无疑扮演着举足轻重的角色。然而&#xff0c;当移动硬盘突然无法访问时&#xff0c;这无疑给用户带来了巨大的困扰。想象一下&#xff0c;你急需从移动硬盘中调取一份重要文件&#xff0c;但系统却…

1-markdown转网页样式页面 --[制作网页模板] 【测试代码下载】

markdown转网页 将Markdown转换为带有样式的网页页面通常涉及以下几个步骤&#xff1a;首先&#xff0c;需要使用Markdown解析器将Markdown文本转换为HTML&#xff1b;其次&#xff0c;应用CSS样式来美化HTML内容。此外&#xff0c;还可以加入JavaScript以增加交互性。下面我将…

基于Centos 7系统的安全加固方案

创作不易&#xff0c;麻烦点个免费的赞和关注吧&#xff01; 声明&#xff01; 免责声明&#xff1a;本教程作者及相关参与人员对于任何直接或间接使用本教程内容而导致的任何形式的损失或损害&#xff0c;包括但不限于数据丢失、系统损坏、个人隐私泄露或经济损失等&#xf…

Angular由一个bug说起之十三:Cross Origin

跨域 想要了解跨域&#xff0c;首要要了解源 什么是源&#xff0c;源等于协议加域名加端口号 只有这三个都相同&#xff0c;才是同源&#xff0c;反之则是非同源。 比如下面这四个里&#xff0c;只有第4个是同源 而浏览器给服务器发送请求时&#xff0c;他们的源一样&#xff0…

nacos安装集群

本示例是安装在本地虚拟机linux环境。 &#xff08;1&#xff09;下载nacos https://download.csdn.net/download/lft18/90231054 &#xff08;2&#xff09;上传服务器并修改配置 放到/app/nacos目录下&#xff1a; 解压&#xff1a; tar -zxvf nacos-server-1.4.1.tar.…

taro转H5端踩坑

项目场景&#xff1a; 在利用taro进行多端开发时踩坑随记&#xff1a; 问题描述 在编译h5端的时候提示&#xff1a; Uncaught TypeError: (prevProps.className || prevProps.class || “”).split is not a function" return <ScrollView scrollY onScrollToLower{…

REVERSE-COMPETITION-CCSSSC-2025

REVERSE-COMPETITION-CCSSSC-2025 donntyouseeHappyLockkernel_traffic donntyousee elf64&#xff0c;ida反编译不太行&#xff0c;有花指令&#xff0c;直接调汇编 读输入 读输入前有条打印”plz input your flag”&#xff0c;肯定是在.init_array&#xff0c;确实有很多 …

海外招聘丨 弗拉瑞克商学院—博士研究员:智能家居技术业务和能源管理中的数据分析和人工智能

雇主简介 Vlerick 是一所领先的国际商学院……与众不同。是的&#xff0c;我们提供完全认可的世界一流教育课程&#xff0c;将理论知识和实践见解完美结合。是的&#xff0c;我们是一家领先的学术机构&#xff0c;拥有创新和独立研究的悠久传统。是的&#xff0c;我们拥有国际…

设计模式 行为型 策略模式(Strategy Pattern)与 常见技术框架应用 解析

策略模式&#xff08;Strategy Pattern&#xff09;核心思想是将算法的实现从使用该算法的类中分离出来&#xff0c;作为独立的对象&#xff0c;通过接口来定义算法家族&#xff0c;这样就可以很容易地改变或扩展算法。通过这种方式&#xff0c;可以避免在客户端代码中使用大量…

如何使用脚手架工具开始,快速搭建一个 Express 项目的基础架构

前言 将从如何使用脚手架工具开始&#xff0c;快速搭建一个 Express 项目的基础架构。接着&#xff0c;文章将详细讲解 Express 中间件的概念、分类以及如何有效地使用中间件来增强应用的功能和性能。最后&#xff0c;我们将讨论如何制定合理的接口规范&#xff0c;以确保 API …

《Opencv》基础操作详解(5)

接上篇&#xff1a;《Opencv》基础操作详解&#xff08;4&#xff09;-CSDN博客 目录 接上篇&#xff1a;《Opencv》基础操作详解&#xff08;4&#xff09;-CSDN博客 25、轮廓近似 简介 接口用法 参数说明 返回值 代码示例 结果展示 26、轮廓最小外接圆 简介 接口用…

Java虚拟机面试题:内存管理(上)

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…