随机变量的变量替换——归一化流和直方图规定化的数学基础

变量替换是一种在统计学和数学中广泛应用的技术,它通过定义新的变量来简化问题,使得原本复杂的随机变量变得更加容易分析。

变量替换的公式,用于将一个随机变量 X X X 的概率密度函数 f X f_X fX 转换为其经过函数 g g g 变换后的随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY

定理(变量替换公式)

X X X 是一个概率密度函数为 f X f_X fX 的连续型随机变量,并设存在一个区间 I ⊂ R I \subset \mathbb{R} IR 使得当 x ∉ I x \not\in I xI 时, f X ( x ) = 0 f_X(x)=0 fX(x)=0 (换句话说, X X X 只有在 I I I 中取值时,其概率密度函数才可能不为零,其中 I I I 可以是整个实直线)。设 g : I → R g: I \rightarrow \mathbb{R} g:IR 是一个可微函数,其反函数是 h h h。除了在有限个点处的导数值可能为零外, g g g 的导数在 I I I 中始终为正或者始终为负。如果令 Y = g ( X ) Y=g(X) Y=g(X),那么通过函数 g g g 我们由随机变量 X X X 的概率密度函数得到随机变量 Y Y Y 的概率密度函数:

f Y ( y ) = f X ( h ( y ) ) ⋅ ∣ h ′ ( y ) ∣ f_Y(y) = f_X(h(y)) \cdot |h'(y)| fY(y)=fX(h(y))h(y)

这意味着,如果我们有一个连续型随机变量 X X X,并且我们知道它的概率密度函数 f X ( x ) f_X(x) fX(x),然后我们将 X X X 经过一个可微函数 g g g 变换得到新的随机变量 Y = g ( X ) Y=g(X) Y=g(X),那么 Y Y Y 的概率密度函数 f Y ( y ) f_Y(y) fY(y) 可以通过以下方式计算:

  1. 找到 g g g 的反函数 h h h,即 h ( y ) h(y) h(y) 满足 g ( h ( y ) ) = y g(h(y))=y g(h(y))=y
  2. 计算 h ( y ) h(y) h(y) 的导数 h ′ ( y ) h'(y) h(y)
  3. f X ( x ) f_X(x) fX(x) 替换为 f X ( h ( y ) ) f_X(h(y)) fX(h(y)) 并乘以 ∣ h ′ ( y ) ∣ |h'(y)| h(y) 得到 f Y ( y ) f_Y(y) fY(y)

这个定理告诉我们如何通过一个“合适”的函数 g g g 将一个连续型随机变量 X X X 的概率密度函数 f X f_X fX 转换成另一个随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY

这个定理表明,当我们有一个连续型随机变量 X X X,并知道其概率密度函数 f X f_X fX,如果 g g g 是一个“合适的”函数,那么我们肯定能够求出 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数 f Y f_Y fY。这里的“合适”指的是 g g g 必须满足以下条件:

  1. g g g 是可微的。
  2. g g g 的反函数 h h h 存在。
  3. g g g 的导数在 I I I 内部除有限个点外始终为正或始终为负。

这样,我们就可以使用变量替换公式将 X X X 的概率密度函数 f X f_X fX 转换为 Y Y Y 的概率密度函数 f Y f_Y fY,结果包含了 f X f_X fX g g g 的组合式。这个公式告诉了我们这种转换的关系,并指出了哪些 g g g 是“合适的”。

注意,这里提到的 g g g 函数必须是可微的,并且其导数在给定区间内要么始终为正,要么始终为负,这是保证 h h h 存在且唯一的一个必要条件。此外, g g g 的导数在有限个点处可以为零,但在其他地方不能为零,否则 h h h 不会是一个单射函数,也就无法定义反函数。

简而言之,变量替换公式提供了一种方法,让我们能够通过一个可微的映射函数 g g g 把一个随机变量 X X X 的概率密度函数转换为另一个随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率密度函数。

这个公式在概率论和统计学中非常重要,因为它允许我们通过简单的函数关系将复杂随机变量的概率密度函数转换成易于分析的形式。例如,在实际问题中,我们可能会遇到难以直接分析的概率密度函数,但是通过变量替换,我们可以将其转换为已知的概率密度函数,从而简化问题。

应用场景

  1. 概率分布的变换

    • 例如,如果有一个随机变量 X X X 服从某种分布(如正态分布),我们可以通过定义一个新的变量 Y = g ( X ) Y = g(X) Y=g(X) 来得到 Y Y Y 的分布。这在计算某些复杂分布的概率密度函数(PDF)或累积分布函数(CDF)时非常有用。直方图规定化的数学基础。
  2. 参数估计

    • 在进行参数估计时,有时直接对原始变量进行估计比较困难。通过变量替换,可以将问题转化为更简单的形式,从而更容易地找到合适的估计方法。归一化流的数学基础。
  3. 最优化问题

    • 在最优化问题中,变量替换可以帮助将非线性问题转化为线性问题,或者将约束条件简化,从而更容易求解。

图中展示的是直方图规定化关于变量替换公式的说明。

在这里插入图片描述
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》

具体步骤

  1. 定义新变量

    • 假设原始变量为 X X X,定义一个新的变量 Y = g ( X ) Y = g(X) Y=g(X),其中 g g g 是一个适当的函数。
  2. 确定新变量的分布

    • 如果 X X X 的分布已知,可以通过变换公式推导出 Y Y Y 的分布。例如,如果 X X X 的概率密度函数为 f X ( x ) f_X(x) fX(x),则 Y Y Y 的概率密度函数 f Y ( y ) f_Y(y) fY(y) 可以通过以下公式计算:
      f Y ( y ) = f X ( g − 1 ( y ) ) ∣ d d y g − 1 ( y ) ∣ f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| fY(y)=fX(g1(y)) dydg1(y)
    • 这里 g − 1 g^{-1} g1 g g g 的逆函数, ∣ d d y g − 1 ( y ) ∣ \left| \frac{d}{dy} g^{-1}(y) \right| dydg1(y) 是雅可比行列式的绝对值。
  3. 分析新变量

    • 使用新变量 Y Y Y 进行进一步的分析,如计算期望值、方差、概率等。

示例

假设 X X X 服从标准正态分布 N ( 0 , 1 ) N(0, 1) N(0,1),我们定义一个新的变量 Y = X 2 Y = X^2 Y=X2。那么 Y Y Y 的分布可以通过以下步骤推导:

  1. 定义新变量

    • Y = X 2 Y = X^2 Y=X2
  2. 确定新变量的分布

    • X X X 的概率密度函数为 f X ( x ) = 1 2 π e − x 2 2 f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} fX(x)=2π 1e2x2
    • 由于 Y = X 2 Y = X^2 Y=X2,所以 X = ± Y X = \pm \sqrt{Y} X=±Y
    • 雅可比行列式 ∣ d d y y ∣ = 1 2 y \left| \frac{d}{dy} \sqrt{y} \right| = \frac{1}{2\sqrt{y}} dydy =2y 1
    • 因此, Y Y Y 的概率密度函数为:
      f Y ( y ) = f X ( y ) ∣ 1 2 y ∣ + f X ( − y ) ∣ 1 2 y ∣ f_Y(y) = f_X(\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right| + f_X(-\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right| fY(y)=fX(y ) 2y 1 +fX(y ) 2y 1
      f Y ( y ) = 1 2 π e − y 2 ⋅ 1 2 y + 1 2 π e − y 2 ⋅ 1 2 y f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} fY(y)=2π 1e2y2y 1+2π 1e2y2y 1
      f Y ( y ) = 1 2 π e − y 2 ⋅ 1 y f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{\sqrt{y}} fY(y)=2π 1e2yy 1
      f Y ( y ) = 1 2 π y e − y 2 f_Y(y) = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} fY(y)=2πy 1e2y
  3. 分析新变量

    • 通过上述推导,我们可以看到 Y Y Y 服从卡方分布 χ 2 ( 1 ) \chi^2(1) χ2(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/6210.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Scrapy之一个item包含多级页面的处理方案

目标 在实际开发过程中,我们所需要的数据往往需要通过多个页面的数据汇总得到,通过列表获取到的数据只有简单的介绍。站在Scrapy框架的角度来看,实际上就是考虑如何处理一个item包含多级页面数据的问题。本文将以获取叶子猪网站的手游排行榜及…

应用层协议 HTTP 讲解实战:从0实现HTTP 服务器

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 HTTP 协议 🦋 认识 URL🦋 urlencode 和 urldecode 二:🔥 HTTP 协议请求与响应格式 🦋 HTTP 请求…

Ansys Motor-CAD:IPM 电机实验室 - 扭矩速度曲线

各位电动机迷们,大家好: 在本博客中,我讨论了如何使用 Ansys Motor-CAD 通过 LAB 模块获取扭矩速度曲线。使用每安培最大扭矩电机控制策略,并涵盖恒定扭矩区域和恒定功率、磁通减弱区域。分析了高转子速度如何影响功率输出。 模型…

IPhone16 Pro 设备详情

目录 产品宣传图内部图——前内部图——后设备详细信息 产品宣传图 内部图——前 内部图——后 设备详细信息 信息收集于HubWeb.cn

SQL注入漏洞之基础数据类型注入 字符 数字 搜索 XX 以及靶场实例哟

目录 基础数据类型SQL注入 字符类型注入 单引号双引号解释 案例练习: 数字类型注入 案例 搜索性注入: 案例 XX性注入: 语句 案例 基础SQL注入类型分类 基础数据类型SQL注入 字符类型注入 xxx or 11 # select id,email from member where usernamexx or 11 # --…

【Elasticsearch】腾讯云安装Elasticsearch

Elasticsearch 认识Elasticsearch安装Elasticsearch安装Kibana安装IK分词器分词器的作用是什么?IK分词器有几种模式?IK分词器如何拓展词条?如何停用词条? 认识Elasticsearch Elasticsearch的官方网站如下 Elasticsearch官网 Ela…

【Unity】 HTFramework框架(五十九)快速开发编辑器工具(Assembly Viewer + ILSpy)

更新日期:2025年1月23日。 Github源码:[点我获取源码] Gitee源码:[点我获取源码] 索引 开发编辑器工具MouseRayTarget焦点视角Collider线框Assembly Viewer搜索程序集ILSpy反编译程序集搜索GizmosElement类找到Gizmos菜单找到Gizmos窗口分析A…

计算机网络之网络层

本文章目录结构出自于《王道计算机考研 计算机网络_哔哩哔哩_bilibili》 03 网络层 在网上看到其他人做了相关笔记,就不再多余写了,直接参考着学习吧。 1 详解网络层-网络层概述和编址【王道计算机网络笔记】_wx63088f6683f8f的技术博客_51CTO博客 2 …

Geek Uninstaller,绿色免安装轻量的应用卸载工具!

软件介绍 链接 一个轻量级拥有简洁交互界面、快速卸载电脑安装程序的工具。可快速扫描删除残余文件和注册表,对顽固和损坏的程序可执行强制删除、独立页面管理卸载系统Microsoft Store应用、快速打开程序安装文件夹、快速打开编辑程序注册表位置、将安装程序列表导…

解释 RESTful API,以及如何使用它构建 web 应用程序

RESTful API是一种设计和构建Web服务的架构风格,它遵循一组规范和约定,使客户端能够通过HTTP协议进行与服务器的通信,并进行资源的创建、读取、更新和删除操作。 REST(Representational State Transfer)表示资源的状态…

工业“MCU+AI”

随着工业4.0的推进,传统工业设备正向智能化和自动化方向转型。这要求设备具备更高的算力、更强的实时处理能力以及支持AI算法的能力,以应对工业机器人、电机控制、预测性维护等复杂应用场景。 近年来越来越多的芯片厂商纷纷推出工业“MCUAI”产品&#…

优选算法——哈希表

目录 1. 哈希表简介 2. 两数之和 3. 判定是否为字符重排 4. 存在重复元素 5. 字母异位词分组 1. 哈希表简介 2. 两数之和 题目链接:1. 两数之和 - 力扣(LeetCode) 题目展示: 题目分析: 大家来看上面的图&…

阴沟翻船题——Longest Substring Without Repeating Characters

一、事件概述 今天接到一个面试,让线上做题。面试官出了个leetcode的题。题目如图所示: 我没有刷过leetcode,上学时候我们做的hdu-acm和codeforces。咋一接到题目,看到是个字符串题,并且找最长字串,第一反…

k8s使用nfs持久卷

开启持久化卷后可以实现服务开启在不同节点也能读取到和拿到服务节点的文件。 基本流程为将集群中一个节点作为服务节点安装共享储存应用的服务端选择目录和开启端口,其他节点根据端口挂载目录。然后使用kubesphere选择相应的镜像并将端口信息和挂载目录信息作为参…

数据结构测试题2

一、单选题(每题 2 分,共20分) 1. 栈和队列的共同特点是( A )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2. 用链接方式存储的队列,在进行插入运算时( C ) A. 仅修改头指针 B. 头…

嵌入式知识点总结 操作系统 专题提升(一)-进程和线程

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.什么是进程?什么是线程? 2.进程和线程有什么区别? 3.何时使用多进程,何时使用多线程? 4.进程有几种状态&#xff…

Spring Security(maven项目) 3.0.2.6版本—总

通过实践而发现真理,又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识,又从理性认识而能动地指导革命实践,改造主观世界和客观世界。实践、认识、再实践、再认识,这种形式,循环往复以至无穷&#xf…

【2024年华为OD机试】(A卷,200分)- 简单的解压缩算法 (JavaScriptJava PythonC/C++)

一、问题描述 题目描述 现需要实现一种算法,能将一组压缩字符串还原成原始字符串,还原规则如下: 字符后面加数字N,表示重复字符N次。例如:压缩内容为 A3,表示原始字符串为 AAA。花括号中的字符串加数字N…

K8S中Service详解(一)

Service介绍 在Kubernetes中,Service资源解决了Pod IP地址不固定的问题,提供了一种更稳定和可靠的服务访问方式。以下是Service的一些关键特性和工作原理: Service的稳定性:由于Pod可能会因为故障、重启或扩容而获得新的IP地址&a…

jenkins-k8s pod方式动态生成slave节点

一. 简述: 使用 Jenkins 和 Kubernetes (k8s) 动态生成 Slave 节点是一种高效且灵活的方式来管理 CI/CD 流水线。通过这种方式,Jenkins 可以根据需要在 Kubernetes 集群中创建和销毁 Pod 来执行任务,从而充分利用集群资源并实现更好的隔离性…