图神经网络(GNN)的简介

近年来,图神经网络(GNN)在社交网络、知识图、推荐系统甚至生命科学等各个领域得到了越来越广泛的应用。GNN在对图节点之间依赖关系进行建模的强大功能,使得与图分析相关的研究领域取得了突破。本文介绍了图神经网络的基本原理,以及两种高级的算法,DeepWalk和GraphSage。

图(Graph)

在讨论GNN之前,我们先来了解一下什么是图。在计算机科学中,图是由顶点和边两部分组成的一种数据结构。图G可以通过顶点集合V和它包含的边E来进行描述。

根据顶点之间是否存在方向依赖关系,边可以是有向的,也可以是无向的。

图 1有向图

顶点也称为节点,在本文中,这两个术语是可以互换。

图神经网络

图神经网络是一种直接作用于图结构上的神经网络。GNN的一个典型应用是节点分类,本质上,图中的每个节点都与一个标签相关联,我们希望预测未标记节点的标签。本文将介绍该论文中描述的算法,

在节点分类问题中,每个节点v都可以用其特征x_v表示并且与已标记的标签t_v相关联。给定部分标记的图G,目标是利用这些标记的节点来预测未标记的节点标签。它通过学习得到每个节点的d维向量(状态)表示为h_v,同时包含其相邻节点的信息。

x_co[v] 代表连接顶点v的边的特征,h_ne[v]代表顶点v的邻居节点的嵌入表示,x_ne[v]代表顶点v的邻居节点特征。f是将输入投影到d维空间的转移函数,由于要求出h_v的唯一解,我们应用Banach不动点理论重写上述方程进行迭代更新。

H和X分别表示所有h和x的连接,通过将状态h_v以及特征x_v传递给输出函数g来计算GNN的输出。

这里的f和g都可以解释为全连接前馈神经网络,L1损失可以直接表述为如下函数:

它可以通过梯度下降进行优化,但是该论文指出的原始GNN有三个主要局限:

1.如果放宽了“固定点”的假设,则可以利用多层感知器来学习更稳定的表示,并删除迭代更新过程。 这是因为在原始方法中,不同的迭代使用转移函数f的相同参数,而不同MLP层中的不同参数允许分层特征提取;

2.不能处理边缘信息(例如知识图谱中的不同边可能表示节点之间的不同关系);

3. 固定点会限制节点分布的多样化,因此可能不适合学习节点表示。

虽然现在已经提出了几种GNN变体来解决上述问题。 但是他们不是论文的重点。

DeepWalk

DeepWalk是第一个以无监督学习的节点嵌入算法。它在训练过程中类似于词嵌入。它的目的是让图中的节点分布和语料库中的单词分布都遵循幂律,如下图所示:

算法包括两个步骤:

1. 在图中的节点上执行随机游走生成节点序列;

2. 运行skip-gram,根据步骤1中生成的节点序列学习每个节点的嵌入;

在随机游走过程中,下一个节点是从前一节点的邻居统一采样。然后将每个序列截短为长度为2 | w |+1的子序列,其中w表示skip-gram中的窗口大小。如果您不熟悉skip-gram,我之前的博客文章已经向您介绍它的工作原理。

在论文中,分层softmax用于解决由于节点数量庞大而导致的softmax计算成本过高的问题。为了计算每个单独输出元素的softmax值,我们必须为所有元素k计算ek。

图 2 softmax的定义

因此,原始softmax的计算时间是 O(|V|) ,其中其中V表示图中的顶点集。

多层的softmax利用二叉树来解决softmax计算成本问题。 在二叉树中,所有叶子节点(上面所说的图中的v1,v2,... v8)都是图中的顶点。 在每个内部节点中(除了叶子节点以外的节点,也就是分枝结点),都通过一个二元分类器来决定路径的选取。 为了计算某个顶点v_k的概率,可以简单地计算沿着从根节点到叶子节点v_k的路径中的每个子路径的概率。 由于每个节点的孩子节点的概率和为1,因此在多层softmax中,所有顶点的概率之和等于1的特性仍然能够保持。如果n是叶子的数量,二叉树的最长路径由O(log(n))限定,因此,元素的计算时间复杂度将减少到O(log | V |)。

图 3多层softmax

在训练DeepWalk GNN之后,模型已经学习到了每个节点的表示,如下图所示。不同的颜色在输入图中(图a)表示不同标签。 我们可以看到,在输出图中,具有相同标签的节点聚集在一起,而具有不同标签的大多数节点被正确分开。

然而,DeepWalk的主要问题是它缺乏泛化能力。每当有新节点加入到图中时,它必须重新训练模型以正确表示该节点。因此,这种GNN不适用于图中节点不断变化的动态图。

GraphSage

GraphSage提供了解决上述问题的方案,它以归纳方式学习每个节点的嵌入。具体来讲,它将每个节点用其邻域的聚合重新表示。因此,即使在训练期间未出现的新节点,也仍然可以由其相邻节点正确地表示。下图展示了GraphSage的算法过程:

外层for循环表示更新迭代次数,而 h^k_v 表示节点v在迭代第 k次时的本征向量。在每次迭代时,将通过聚合函数,前一次迭代中v和v领域的本征向量以及权重矩阵W^k来更新h^k_v。这篇论文提出了三种聚合函数:

1.均值聚合器:

均值聚合器取一个节点及其邻域的本征向量的平均值。

 

与原始方程相比,它删除了上述伪代码中第5行的连接操作。这种操作可以被视为"skip-connection" ("跳连接"),这篇论文后面将证明其可以在很大程度上提高模型的性能。

2. LSTM聚合器:

由于图中的节点没有任何顺序,因此他们通过互换这些节点来随机分配顺序。

3.池聚合器:

此运算符在相邻顶点集上执行逐元素池化函数。下面显示了最大池的例子:

可以用平均池或任何其他对称池函数替换这种最大池函数。尽管均值池和最大池聚合器性能相似,但是池聚合器(也就是说采用最大池函数)被实验证明有最佳的性能。 论文使用max-pooling作为默认聚合函数。损失函数定义如下:

其中u 和v 共同出现在一定长度的随机游走中,而 v_n 是不与u共同出现的负样本。这种损失函数鼓动节点在投影空间中更靠近嵌入距离更近的节点,而与那些相距很远的节点分离。通过这种方法,节点将获得越来越多其邻域的信息。

GraphSage通过聚合其附近的节点,可以为看不见的节点生成可表示的嵌入位置。它让节点嵌入的方式可以被应用于涉及动态图的研究领域,这类动态图的图的结构是可以不断变化的。例如,Pinterest采用了GraphSage的扩展版本PinSage作为他们的内容探索系统的核心。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/68253.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是图神经网络GNN?

一、什么是GNN 一句话概括图神经网络(Graphic Nuaral Network,GNN):将一个数据(一个图)输入到网络(GNN)中,会得到一个输出数据(同样是图)&#xf…

图神经网络简介,什么是图神经网络,GNN

目录 什么是图? 二、怎么把一些内容表示成图 2.1 怎么把图片表示成图 2.2 将一句话表示成图 2.3 其他信息转换成图的例子 2.3.1 分子结构表示成图 2.3.2 社会人物关系表示成图 2.3.3 其他可以表示成图的信息 三、哪些类型的问题有图结构数据 3.1 图层面的任务…

ChatGPT 火爆了,为什么不被开发者所欢迎?

可以说,ChatGPT是近几个月最受欢迎的话题之一,毕竟这个聊天机器人比它的前辈们“聪明”了很多,除了聊天之外,还会打草稿和编写代码,在某种程度上也能提高生产力。 记得 ChatGPT 最开始上线不久的时候,看到…

不需要等待列表,也不用魔法上网的Claude,能否比肩ChatGPT?

近期,国外Anthropic公司发布了Claude聊天机器人,堪比ChatGPT的最大竞争对手。一经推出,市场上就经常拿它俩来对比,因为推出Claude产品的Anthropic 公司是由多位前OpenAI前员工组成,两家公司,以及他们推出的…

漫画:骚操作系列(一文让你学会如何用代码判断“24“点)

“24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。今天就为大家分享一道关于“24点”的算法题目。 话不多说,直接看题…

修改Discuz首页四格列表

优化经典四格版式下的用户界面 CSS,增加了表格间的分割线显示,使页面 UI 更为整齐 效果图: 修改步骤: 1.打开文件:template/default/style/t5/style.css 2.尾部新增样式: .category_newlist {padding: 0…

卡方检验四格表怎么做_SPSS案例实践:2*2四格表卡方检验

在某项调查研究中,所有受访家庭按照家庭收入被分为低收入家庭和中高收入家庭两类,现希望考察不同收入级别的家庭其轿车拥有率是否相同。 SPSS数据如下: 家庭是否拥有轿车是一个二结局的分类变量,要么有要么没有,互斥,所以该问题是一个典型的两个率的差异比较。 01 频数资…

AI漫画生成

文章目录 前言一、漫画生成怎么搞?二、White-box Cartoon Representations1.网络结构2.代码 附 前言 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要&#xff0c…

[四格漫画] 第523话 电脑的买法

翻译至:http://www.atmarkit.co.jp/ait/articles/1610/04/news018.html

四格漫画《MUXing》——发版后……

产品发版上线后,工作并没有结束…… 【本文首发于:百度MUX】http://mux.baidu.com/?p2736 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接: http://blog.51cto.com/baidutech/770299 ,如需转载请自行联系…

四格漫画《MUXing》——度姐传说

MUXING用户研究工程师们热情、专业且富有亲和力。同时,他们也是群有故事的人…… 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p1169 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://blog.51cto.c…

四格漫画《MUXing》——请客记

年关将近,聚会增多,请客?还是被请?这是个问题…… 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p675 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://blog.51ct…

四格漫画《MUXing》——龙年大吉

2012世界末日就要来了!MUXING要集齐龙珠,唤出神龙,拯救世界!龙年必须要大吉! 【本文首发于:百度MUX】http://mux.baidu.com/?p2866 【 关注百度技术沙龙 本文转自百度技术51CTO博客,原文链接&a…

四格漫画《MUXing》——他们在干什么

黑夜给了我一双黑色的眼睛,我用它来追逐光明,但……他们在干什么? 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p1859 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://bl…

四格漫画《MUXing》——MUX诞生记

MUXING 是谁??!!据说与外星生物有关……是神秘的…… 木星(muxing),为太阳系八大行星之一,距太阳(由近及远)顺序为第五,亦为太阳系体积最大、自转…

[四格漫画] 第504话 网络相机

本文翻译至:http://www.atmarkit.co.jp/ait/articles/1604/26/news026.html

四格漫画《MUXing》——一场大雪

飞 花厚一尺,和月照三更。 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p758 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://blog.51cto.com/baidutech/747677,如需转载请自行联系原作…

四格漫画《MUXing》——坏习惯

每个人都有这样那样的坏习惯…… 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p1389 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://blog.51cto.com/baidutech/747528,如需转载请自行联系原作者

四格漫画《MUXing》——为生命努力

如果身陷困境中,需要保持镇静,分析所处环境,寻找出路,或根据自身的情况和周围的环境条件,发出不同的求救信号…… 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p812 【 关注百度技术沙龙】 本文…

四格漫画《MUXing》——扫地神尼

据说在百度每一个部门里,都有一个扫地的老太太…… 【本文首发于: 百度用户体验部】 http://mux.baidu.com/?p725 【 关注百度技术沙龙】 本文转自百度技术51CTO博客,原文链接:http://blog.51cto.com/baidutech/747705 &#xff…