Java8 Stream:2万字20个实例,玩转集合的筛选、归约、分组、聚合

Java8 Stream

  • 1 Stream概述
  • 2 Stream的创建
  • 3 Stream的使用
    • 案例使用的员工类
    • 3.1 遍历/匹配(foreach/find/match)
    • 3.2 筛选(filter)
    • 3.3 聚合(max/min/count)
    • 3.4 映射(map/flatMap)
    • 3.5 归约(reduce)
    • 3.6 收集(collect)
      • 3.6.1 归集(toList/toSet/toMap)
      • 3.6.2 统计(count/averaging)
      • 3.6.3 分组(partitioningBy/groupingBy)
      • 3.6.4 接合(joining)
      • 3.6.5 归约(reducing)
    • 3.7 排序(sorted)
    • 3.8 提取/组合

点波关注不迷路,一键三连好运连连!
博客的示例代码已大部分整理在Github中:https://github.com/ThinkMugz/springboot-demo-major ,需要的伙伴儿自取

免费在线作图工具,点击邀请链接注册赠送7天会员:https://www.processon.com/i/5c51384de4b08a7683b99e16
在这里插入图片描述

先贴上几个案例,水平高超的同学可以挑战一下:

  1. 从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。
  2. 统计员工的最高薪资、平均薪资、薪资之和。
  3. 将员工按薪资从高到低排序,同样薪资者年龄小者在前。
  4. 将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。

用传统的迭代处理也不是很难,但代码就显得冗余了,跟Stream相比高下立判。

1 Stream概述

Java 8 是一个非常成功的版本,这个版本新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

那么什么是Stream

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

  1. 中间操作,每次返回一个新的流,可以有多个。
  2. 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

另外,Stream有几个特性:

  1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
  2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
  3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2 Stream的创建

Stream可以通过集合数组创建。

1、通过 java.util.Collection.stream() 方法用集合创建流

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3、使用Stream的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

输出结果:

0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652

streamparallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
在这里插入图片描述
如果流中的数据量足够大,并行流可以加快处速度。

除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

3 Stream的使用

在使用stream之前,先理解一个概念:Optional

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。
更详细说明请见:菜鸟教程Java 8 Optional类

接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
在这里插入图片描述

案例使用的员工类

这是后面案例中使用的员工类:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));class Person {private String name;  // 姓名private int salary; // 薪资private int age; // 年龄private String sex; //性别private String area;  // 地区// 构造方法public Person(String name, int salary, int age,String sex,String area) {this.name = name;this.salary = salary;this.age = age;this.sex = sex;this.area = area;}// 省略了get和set,请自行添加}

3.1 遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。
在这里插入图片描述

// import已省略,请自行添加,后面代码亦是public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);// 遍历输出符合条件的元素list.stream().filter(x -> x > 6).forEach(System.out::println);// 匹配第一个Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();// 匹配任意(适用于并行流)Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();// 是否包含符合特定条件的元素boolean anyMatch = list.stream().anyMatch(x -> x > 6);System.out.println("匹配第一个值:" + findFirst.get());System.out.println("匹配任意一个值:" + findAny.get());System.out.println("是否存在大于6的值:" + anyMatch);}
}

3.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
在这里插入图片描述

案例一:筛选出Integer集合中大于7的元素,并打印出来

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);Stream<Integer> stream = list.stream();stream.filter(x -> x > 7).forEach(System.out::println);}
}

预期结果:

8 9

案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList());System.out.print("薪资高于8000美元的员工:" + fiterList);}
}

运行结果:

薪资高于8000美元的员工:[Tom, Anni, Owen]

3.3 聚合(max/min/count)

maxmincount这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
在这里插入图片描述

案例一:获取String集合中最长的元素。

public class StreamTest {public static void main(String[] args) {List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");Optional<String> max = list.stream().max(Comparator.comparing(String::length));System.out.println("最长的字符串:" + max.get());}
}

输出结果:

最长的字符串:weoujgsd

案例二:获取Integer集合中的最大值。

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);// 自然排序Optional<Integer> max = list.stream().max(Integer::compareTo);// 自定义排序(从大到小排序)Optional<Integer> max2 = list.stream().max((o1, o2) -> o2 - o1);System.out.println("自然排序的最大值:" + max.get());System.out.println("自定义排序的最大值:" + max2.get());}
}

输出结果:

自然排序的最大值:11
自定义排序的最大值:4

案例三:获取员工薪资最高的人。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));System.out.println("员工薪资最大值:" + max.get().getSalary());}
}

输出结果:

员工薪资最大值:9500

案例四:计算Integer集合中大于6的元素的个数。

import java.util.Arrays;
import java.util.List;public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);long count = list.stream().filter(x -> x > 6).count();System.out.println("list中大于6的元素个数:" + count);}
}

输出结果:

list中大于6的元素个数:4

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为mapflatMap

  • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

在这里插入图片描述
在这里插入图片描述
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {public static void main(String[] args) {String[] strArr = { "abcd", "bcdd", "defde", "fTr" };List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());System.out.println("每个元素大写:" + strList);System.out.println("每个元素+3:" + intListNew);}
}

输出结果:

每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14]

案例二:将员工的薪资全部增加1000。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));// 不改变原来员工集合的方式List<Person> personListNew = personList.stream().map(person -> {Person personNew = new Person(person.getName(), 0, 0, null, null);personNew.setSalary(person.getSalary() + 10000);return personNew;}).collect(Collectors.toList());System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());// 改变原来员工集合的方式List<Person> personListNew2 = personList.stream().map(person -> {person.setSalary(person.getSalary() + 10000);return person;}).collect(Collectors.toList());System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());}
}

输出结果:

一次改动前:Tom–>8900
一次改动后:Tom–>18900
二次改动前:Tom–>18900
二次改动后:Tom–>18900

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {public static void main(String[] args) {List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");List<String> listNew = list.stream().flatMap(s -> {// 将每个元素转换成一个streamString[] split = s.split(",");Stream<String> s2 = Arrays.stream(split);return s2;}).collect(Collectors.toList());System.out.println("处理前的集合:" + list);System.out.println("处理后的集合:" + listNew);}
}

输出结果:

处理前的集合:[m-k-l-a, 1-3-5]
处理后的集合:[m, k, l, a, 1, 3, 5]

此外,map系列还有mapToInt、mapToLong、mapToDouble三个函数,它们以一个映射函数为入参,将流中每一个元素处理后生成一个新流。以mapToInt为例,看两个示例:

public static void main(String[] args)  {// 输出字符串集合中每个字符串的长度List<String> stringList = Arrays.asList("mu", "CSDN", "hello","world", "quickly");stringList.stream().mapToInt(String::length).forEach(System.out::println);// 将int集合的每个元素增加1000List<Integer> integerList = Arrays.asList(4, 5, 2, 1, 6, 3);integerList.stream().mapToInt(x -> x + 1000).forEach(System.out::println);
}

mapToInt三个函数生成的新流,可以进行很多后续操作,比如求最大最小值、求和、求平均值:

public static void main(String[] args) {List<Double> doubleList = Arrays.asList(1.0, 2.0, 3.0, 4.0, 2.0);double average = doubleList.stream().mapToDouble(Number::doubleValue).average().getAsDouble();double sum = doubleList.stream().mapToDouble(Number::doubleValue).sum();double max = doubleList.stream().mapToDouble(Number::doubleValue).max().getAsDouble();System.out.println("平均值:" + average + ",总和:" + sum + ",最大值:" + max);
}

3.5 归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
在这里插入图片描述

案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);// 求和方式1Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);// 求和方式2Optional<Integer> sum2 = list.stream().reduce(Integer::sum);// 求和方式3Integer sum3 = list.stream().reduce(0, Integer::sum);// 求乘积Optional<Integer> product = list.stream().reduce((x, y) -> x * y);// 求最大值方式1Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);// 求最大值写法2Integer max2 = list.stream().reduce(1, Integer::max);System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);System.out.println("list求积:" + product.get());System.out.println("list求最大值:" + max.get() + "," + max2);}
}

输出结果:

list求和:29,29,29
list求积:2112
list求最大值:11,11

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));// 求工资之和方式1:Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);// 求工资之和方式2:Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),(sum1, sum2) -> sum1 + sum2);// 求工资之和方式3:Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);// 求最高工资方式1:Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),Integer::max);// 求最高工资方式2:Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),(max1, max2) -> max1 > max2 ? max1 : max2);// 求最高工资方式3:Integer maxSalary3 = personList.stream().map(Person::getSalary).reduce(Integer::max).get();System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);System.out.println("最高工资:" + maxSalary + "," + maxSalary2 + "," + maxSalary3);}
}

输出结果:

工资之和:49300,49300,49300
最高工资:9500,9500

3.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toListtoSettoMap比较常用,另外还有toCollectiontoConcurrentMap等复杂一些的用法。

下面用一个案例演示toListtoSettoMap

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000).collect(Collectors.toMap(Person::getName, p -> p));System.out.println("toList:" + listNew);System.out.println("toSet:" + set);System.out.println("toMap:" + map);}
}

运行结果:

toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

3.6.2 统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

  • 计数:count
  • 平均值:averagingIntaveragingLongaveragingDouble
  • 最值:maxByminBy
  • 求和:summingIntsummingLongsummingDouble
  • 统计以上所有:summarizingIntsummarizingLongsummarizingDouble

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));// 求总数Long count = personList.stream().collect(Collectors.counting());// 求平均工资Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));// 求最高工资Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));// 求工资之和Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));// 一次性统计所有信息DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));System.out.println("员工总数:" + count);System.out.println("员工平均工资:" + average);System.out.println("员工工资总和:" + sum);System.out.println("员工工资所有统计:" + collect);}
}

运行结果:

员工总数:3
员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

3.6.3 分组(partitioningBy/groupingBy)

  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

在这里插入图片描述

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, "male", "New York"));personList.add(new Person("Jack", 7000, "male", "Washington"));personList.add(new Person("Lily", 7800, "female", "Washington"));personList.add(new Person("Anni", 8200, "female", "New York"));personList.add(new Person("Owen", 9500, "male", "New York"));personList.add(new Person("Alisa", 7900, "female", "New York"));// 将员工按薪资是否高于8000分组Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));// 将员工按性别分组Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));// 将员工先按性别分组,再按地区分组Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));System.out.println("员工按薪资是否大于8000分组情况:" + part);System.out.println("员工按性别分组情况:" + group);System.out.println("员工按性别、地区:" + group2);}
}

输出结果:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));System.out.println("所有员工的姓名:" + names);List<String> list = Arrays.asList("A", "B", "C");String string = list.stream().collect(Collectors.joining("-"));System.out.println("拼接后的字符串:" + string);}
}

运行结果:

所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C

3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));System.out.println("员工扣税薪资总和:" + sum);// stream的reduceOptional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);System.out.println("员工薪资总和:" + sum2.get());}
}

运行结果:

员工扣税薪资总和:8700
员工薪资总和:23700

3.7 排序(sorted)

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):Comparator排序器自定义排序

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Sherry", 9000, 24, "female", "New York"));personList.add(new Person("Tom", 8900, 22, "male", "Washington"));personList.add(new Person("Jack", 9000, 25, "male", "Washington"));personList.add(new Person("Lily", 8800, 26, "male", "New York"));personList.add(new Person("Alisa", 9000, 26, "female", "New York"));// 按工资升序排序(自然排序)List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName).collect(Collectors.toList());// 按工资倒序排序List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()).map(Person::getName).collect(Collectors.toList());// 先按工资再按年龄升序排序List<String> newList3 = personList.stream().sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName).collect(Collectors.toList());// 先按工资再按年龄自定义排序(降序)List<String> newList4 = personList.stream().sorted((p1, p2) -> {if (p1.getSalary() == p2.getSalary()) {return p2.getAge() - p1.getAge();} else {return p2.getSalary() - p1.getSalary();}}).map(Person::getName).collect(Collectors.toList());System.out.println("按工资升序排序:" + newList);System.out.println("按工资降序排序:" + newList2);System.out.println("先按工资再按年龄升序排序:" + newList3);System.out.println("先按工资再按年龄自定义降序排序:" + newList4);}
}

运行结果:

按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

public class StreamTest {public static void main(String[] args) {String[] arr1 = { "a", "b", "c", "d" };String[] arr2 = { "d", "e", "f", "g" };Stream<String> stream1 = Stream.of(arr1);Stream<String> stream2 = Stream.of(arr2);// concat:合并两个流 distinct:去重List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());// limit:限制从流中获得前n个数据List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());// skip:跳过前n个数据List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());System.out.println("流合并:" + newList);System.out.println("limit:" + collect);System.out.println("skip:" + collect2);}
}

运行结果:

流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]

好,以上就是全部内容,能坚持看到这里,你一定很有收获,那么动一动拿offer的小手,点个赞再走吧,听说这么做的人2021年都交了好运!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/71422.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

O2S.Components.PDFView4NET显示pdf(winform)

O2S.Components.PDFView4NET显示pdf&#xff08;winform&#xff09; 首先得把这个dll导入工具箱 选中该dll组件 按确定就多出来这些东西 然后再按确定&#xff0c;工具箱就有下面这些组件啦 2. 拉一个PDFpageview&#xff0c;和一个pdfdocument就可以用来显示了 然后放代码…

Java8对中文汉字排序的Comparator实现类

最近由于工作需要需要对中文汉字排序&#xff0c;编写了Comparator实现类分享给大家。 直接上代码&#xff1a; import java.util.Comparator;public class ChineseComparator<T> implements Comparator<T> {private static boolean isDigit(char ch) {return ch …

Collectors.toMap mergeFunction参数,(o1,o2)->o1的含义

文章目录 前言结论代码示例源码分析 前言 在java8 Stream流中经常有看到这么一种写法Collectors.toMap(Person::getName, Function.identity(),(o1, o2)->o2), 经常会比较好奇o1,o2指的是什么含义&#xff0c;本篇博文主要讲解o1,o2的含义。 结论 这里使用(o1, o2)->o…

O2OA:移动办公市场中的另一股清流

相比多数管理软件为外资品牌主导的尴尬局面&#xff0c;移动OA市场罕有为国产厂商独霸天下。 一方面&#xff0c;随着中国经济的蓬勃发展&#xff0c;企业数量快速增长。有资料显示&#xff0c;截至2017年三季度末&#xff0c;全国工商注册的中小企业总量超过4200万家&#xff…

公开信呼吁,所有 AI 实验室应立即暂停训练比 GPT-4 更强大的 AI 模型?

呼吁所有 AI 实验室立即暂停训练比 GPT-4 更强大的 AI 系统&#xff0c;为期至少 6 个月。 本文转自&#xff1a;机器之心 人们一直在说 ChatGPT 有风险&#xff0c;OpenAI CEO 也这么说&#xff0c;现在终于有人出手了。 在 GPT-4 诞生两周之际&#xff0c;一封公开信正在社交…

交互式数据分析和处理新方法:pandas-ai =Pandas + ChatGPT

Python Pandas是一个为Python编程提供数据操作和分析功能的开源工具包。这个库已经成为数据科学家和分析师的必备工具。它提供了一种有效的方法来管理结构化数据(Series和DataFrame)。 在人工智能领域&#xff0c;Pandas经常用于机器学习和深度学习过程的预处理步骤。Pandas通过…

GPT-4将在下周发布!!

来源&#xff1a;学术头条 GPT-4 将在下周发布&#xff01;&#xff01; 3 月 9 日&#xff0c;微软德国 CTO Andreas Braun 在一场名为 “AI in Focus - Digital Kickoff” 的活动中表示&#xff0c;GPT-4 将在下周发布&#xff0c;将提供多模态模型。自 3 月初发布 Kosmos-1 …

用LangChain构建大语言模型应用

用LangChain构建大语言模型应用 自 ChatGPT 发布以来&#xff0c;大型语言模型 (LLM) 广受欢迎。尽管您可能没有足够的资金和计算资源从头开始训练自己的大语言模型&#xff0c;但您仍然可以使用预训练的大语言模型来构建一些很酷的东西&#xff0c;例如&#xff1a; 可以根据…

开发一个App大概要多少钱?只讲干货

结合自己的各种采坑失败经验以及周边个别成功试水经验&#xff0c;站在个人角度给出一些理解。 APP制作有多种形式&#xff0c;所以需要的成本差异较大。 1.寻找外包公司 2.模板APP&#xff08;内行叫SAAS&#xff09; 3.自己组建团队 互联网外包公司的成本构成&#xff1f…

chatgpt赋能python:为什么Python报错GBK,如何解决?

为什么Python报错GBK&#xff0c;如何解决&#xff1f; Python 是一种广泛使用的编程语言&#xff0c;但在使用过程中经常会出现 “GBk” 相关报错。本文将探讨这种报错的原因和解决方法。 什么是GBK&#xff1f; GBK 是中文编码&#xff0c;是用来在计算机上表示中文字符集…

谷歌如何注册账号?手机号无法验证处理方法!2023年最新教程!

最近学会了如何爬网站&#xff0c;然后在观看油管过程中&#xff0c;想要注册一个油管账号&#xff0c;也就是谷歌账号。但是在注册过程中&#xff0c;您发现无法使用手机号进行验证。您已经查阅了一些解决方法&#xff0c;不过没有解决&#xff0c;最后钞能力在某宝&#xff0…

【实战案例】分享6种常用的信用卡欺诈检测算法(附 Python 代码)

大家好&#xff0c;本文旨在使用 XGBoost、随机森林、KNN、逻辑回归、SVM 和决策树解决信用卡潜在欺诈的分类问题&#xff0c;内容较长&#xff0c;建议收藏、点赞。 文章目录 技术提升案例简介导入相关模块导入数据探索性数据分析特征选择和数据集拆分模型建立模型评估准确率F…

计算机毕业设计(附源码)python信用卡逾期数据处理分析系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;…

毕业论文使用的卡方检验该如何分析?

一、卡方检验基本说明 有时&#xff0c;在研究中某个随机变量是否服从某种特定的分布是需要进行检验的。可以根据以往的经验或者实际的观测数据分布情况&#xff0c;推测总体可能服从某种分布函数F&#xff08;x&#xff09;。卡方检验就是这样一种用来检验给定的概率值下数据…

金融学毕业论文选题哪些比较少人写而且资料比较多的?

提到金融学专业&#xff0c;你的第一印象是什么&#xff1f; 或许是金融学专业&#xff0c;是一个非常吸金的专业&#xff0c;又或者金融学专业是比较难考的专业&#xff0c;在这学习金融学专业的人都非常厉害&#xff0c;因为金融学非常难学&#xff0c;涉及的领域非常广。 …

教资教育知识与能力中学生发展心理

5.1 心理发展特征 1、中学生心理发展的一般特点【选择/材料】独闭不会过动 独立性&#xff1a;成人感、独立意识 闭锁性&#xff1a;不轻易表露内心世界 不平衡性&#xff1a;心理发展有时落后生理发展 社会学&#xff1a;关注社会生活 过渡性&#xff1a;半幼稚、半成熟…

缺考计算机软件考试影响诚信吗,教资缺考一次会被记入诚信档案?会影响之后的考试?...

大家好&#xff0c;我是小灵通岳麓sir 关注我(csylzxxy)&#xff0c;了解更多相关资讯 很多小伙伴都想问&#xff1a;如果没能去参加考试&#xff0c;会影响下一次报考&#xff1f;听说还会被记入诚信档案&#xff1f;那么不去考试&#xff0c;会不会造成严重的影响呢&#xff…

教资手机报名就5步

愁不想开电脑怎么办呢&#xff1f;就看到一个帖子说苹果手机可以直接报名教师资格证1手机 开心坏了&#xff0c;躺在床上就把名报了&#xff0c;随便给大家做了一份攻略&#xff0c;超级简单&#xff0c;只需5步。 第一步&#xff1a; 就是打开你的手机搜索【中国教育考试网】&…

教资信息技术

笔记↓ 导入新课 引导学生进入学习状态 创设情境 激发学生学习兴趣&#xff0c;使注意力快速集中到课堂上。通过多媒体展现生活实例&#xff0c;讲故事&#xff0c;做游戏。 温故知新 新旧知识之间有联系&#xff0c;适合逻辑复杂内容充实的课程&#xff0c;帮助学生把本课体系…

教师资格证报名照片有什么要求?这些小细节要注意

教师资格证报名照片有什么要求吗&#xff1f;教师资格证考试也是每年当中比较火热的一门考试&#xff0c;很多小伙伴都会在大学期间想要考到教师资格证&#xff0c;想要在毕业之后当一名老师。但是我们在报名的时候是需要上传照片的&#xff0c;很多小伙伴不知道教师资格证报名…