论文浅尝 | 预训练Transformer用于跨领域知识图谱补全

1a233b5bd83c51566ce5d03b63f713b9.png

笔记整理:汪俊杰,浙江大学硕士,研究方向为知识图谱

链接:https://arxiv.org/pdf/2303.15682.pdf

动机

传统的直推式(tranductive)或者归纳式(inductive)的知识图谱补全(KGC)模型都关注于域内(in-domain)数据,而比较少关注模型在不同领域KG之间的迁移能力。随着NLP领域中迁移学习的成功,目前有不少研究使用预训练的语言模型来提高KGC模型的表现,或者同时训练语言模型和KGC模型提升下游NLP任务的表现。尽管这种在结构化的KG和非结构化的文本之间的迁移已经取得了进展,但是关于将模型从一个KG迁移到其他KG的研究还比较少。因此,这项工作的目标是预训练一个Transformer-based可以同时用于transductive和inductive任务的知识图谱补全模型,并且从非结构化文本和结构化KG中同时学习可迁移的知识表示。

贡献

本论文的主要贡献如下:

(1). 提出了一个新的知识图谱补全模型iHT,使用实体的文本信息和实体的邻居进行实体的表示,可以同时用于transductive和inductive KGC;

(2). 在百科全书式大型知识图谱Wikidata5M上进行预训练,预训练的链接预测取得了比传统方法更好的效果;

(3). 将预训练的模型iHT迁移到小型知识图谱上进行微调,取得了比传统模型以及预训练语言模型更好的效果;

方法

c82e5460e83c5591f0620ef5d9052320.png

1. 预训练

预训练阶段使用的数据集为Wikidata5M,数据集里面的每个实体都有一段文本描述,作者首先构造了Entity Transformer输入每个实体的文本描述从而得到每个实体的表示。因为有实体文本的存在,所以在inductive KGC任务下,测试中没有见过的实体可以通过文本的内容进行表示。此处Entity Transformer的初始化参数来自于预训练的语言模型BERT,从而更好获取实体文本中蕴含的知识。

在E ntity Transformer之后,作者又设置了Context Transformer。对于一个训练样本(h,r,t)来说,会随机采样K个头实体(h)的邻居以及相连的关系(r)作为这个训练样本的环境信息(Context),Context Transformer的输入为CLS token、hr,以及h的Context组成的序列。在Context Transformer最后一层GCLS token的embedding将用于之后的链接预测(link predication)。

在link prediction这一步,如果是在训练阶段,每个batch内将会随机采样N个实体作为负样本,将这N个错误的实体与正确的尾实体都和GCLS的embedding计算点乘相似度作为分数,得到N+1维的预测向量,再将此预测向量和one-hot标签计算交叉熵损失。而在预测阶段,这一步将会使用所有的候选实体计算预测分数。

2. 模型迁移

在Wikidata5M上完成iHT的预训练之后,作者将其迁移到小型知识图谱FB15K-237和WN18RR上进行微调。这两个小型KG与预训练的KG存在区别,故可以视为是跨领域的知识图谱补全,虽然FB15K-237中的实体大多数都在Wikidata5M中出现过,但是关系的分布存在区别,作者统计得出在FB15K-237中有80%的头尾实体对是没有在Wikidata5M中出现过的,故也能在一定程度上说明模型的迁移能力;而WN18RR和Wikidata5M的区别会更大,他们的数据源和内容都不一样,因此更能说明模型在不同领域KG之间的迁移能力。

实验

本文在预训练和迁移实验中分别用到了Wikidata5M、FB15K-237和WN18RR三个数据集,并且每个数据集都有transductive和inductive两个版本,数据集的统计信息如下:

2b7f9f9409b23756f07af995c32e0e6d.png

实验的部分参数设置如下:

3237fab18925bfd479c2738db3220543.png

1. 预训练实验

在预训练阶段,作者测试了模型的表现能力,在transductive设定下的实验结果为:

2bc08e236cacf075409d2907bf883513.png

表格的上半部分为传统的KGE模型,下半部分为Transformer-based并且使用了数据集中文本信息的模型,这些Transformer-based模型与本文所提出的模型的主要区别在于Decoder部分,例如MLMLM和KGT5都利用语言建模目标的分布来估计目标实体的可能性,而KEPLER使用类似TransE的评分函数。可以看出不管与哪种模型比较,本文的新模型iHT都取得了最优的效果。在inductive设定下,本文的模型iHT也依然取得了最优效果,具体表现如下所示:

84ac57d0ee171f51b2560f01ae0ea655.png

随后作者做了预训练阶段的消融实验,结果如下表所示:

42eb711acb086b474a4df9e4db512b51.png

为了节约时间,作者在消融实验阶段只设置了5个epoch,所以完整实验结果会与主实验存在微小差异,但并不影响对于模型效果影响因素的探究。第一行是在Context Transformer中使用了头实体邻居信息的结果;第二行是没有使用头实体邻居信息的结果,可以看出在Transductive情境下实体的邻居信息对于实验效果起到了一定程度的贡献;第三行Early Fusion代表着在Entity Transformer中融入关系信息(具体实现方法论文中未详细阐述),可以看出提前给模型关于关系的信息可以提高模型在KGC任务上的表现,但这也会带来效率的下降,因此是否使用提前使用关系信息可以视为在模型表现和模型效率之间的权衡;第四行Random init代表不使用预训练的语言模型BERT进行参数初始化,而是使用参数随机初始化的Transformer模型,在给定的训练epoch下,模型的表现出现了较大程度的下降,因此可以证明预训练的语言模型在训练资源有限的情况下可以帮助理解实体的文本信息从而提高KGC模型的表现;最后一行Entity name代表的是实体的文本类型对于模型性能的影响,在消融实验中作者将实体的文本替换为长度更短、信息更少的实体名称,结果实验效果出现了最大幅度的下降。从上可以看出,在作者设计的模型中,预训练语言模型以及语料信息起到非常大的作用。

2. 迁移实验

作者将预训练之后的模型iHT在两个小型知识图谱上进行了微调,并测试了链接预测的实验结果,如下表所示:

4675eb1eb884a0820aa075ff993cb908.png

作者对比了两个从头训练的baseline模型,并对比了有无Wikidata5M预训练的模型,表格中WD代表使用在Wikidata5M上预训练过的模型进行微调的测试结果,未带WD的实验结果为直接使用预训练的语言模型BERT进行微调的结果,可以看出使用大型知识图谱预训练过的模型会比原始的BERT效果更好一点,说明了在一个KG上预训练然后迁移到另外一个KG上会比直接使用预训练的语言模型迁移到KG上效果更好。

论文还进一步探究在迁移实验下不同的训练数据量对于模型表现的影响,实验结果对下表所示:

56641b58ff26617af2e542127d652906.png

在任何体量的训练数据下,使用Wikidata5M大型知识图谱预训练的模型的链接预测效果都比不进行预训练的效果更好,值得注意的是,在WN18RR数据集中使用10%的训练数据原模型就可以达到0.3以上的MRR,对比使用全量训练数据且未经KG预训练的语言模型的MRR(0.438),已经可以达到其70%以上的效果。可见在大型知识图谱上进行预训练有望减少下游迁移任务的训练数据量要求。

总结

这篇论文提出了一个Transformer-based可以用于inductive KGC和transductive KGC的模型,模型适用于有实体文本信息的数据。在这样的设定下,Wikidata5M上的预训练结果不管在transuctive还是inductive情境下都取得了SOTA效果。最后将Wikidata5M上预训练过的模型迁移到了FB15K-237和WN18RR上进行微调,证明了使用语言模型在大型KG上进行预训练之后,可以提升它在其他领域KG上的表现。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

da08db8f3bd648ed8e7e8fa1d3b22969.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76727.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java版本spring cloud + spring boot企业电子招投标系统源代码 tbms

​ 功能模块: 待办消息,招标公告,中标公告,信息发布 描述: 全过程数字化采购管理,打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力,为…

【机器学习】Overfitting and Regularization

Overfitting and Regularization 1. 过拟合添加正则化2. 具有正则化的损失函数2.1 正则化线性回归的损失函数2.2 正则化逻辑回归的损失函数 3. 具有正则化的梯度下降3.1 使用正则化计算梯度(线性回归 / 逻辑回归)3.2 正则化线性回归的梯度函数3.3 正则化…

PyTorch中加载模型权重 A匹配B|A不匹配B

在做深度学习项目时,从头训练一个模型是需要大量时间和算力的,我们通常采用加载预训练权重的方法,而我们往往面临以下几种情况: 未修改网络,A与B一致 很简单,直接.load_state_dict() net ANet(num_cla…

小鱼深度产品测评之:阿里云容器服务器ASK,一款不需购买节点,即可直接部署容器应用。

容器服务器ASK测评 1、引言2、帮助文档3、集群3.1集群列表3.1.1 详情3.1.1.1概览 tab3.1.1.2基本信息 tab3.1.1.4集群资源 tab3.1.1.5 集群日志 tab3.1.1.6 集群任务 tab 3.1.2 应用管理3.1.2.1 详情3.1.2.2 详情3.1.2.3 伸缩3.1.2.4 监控 3.1.3 查看日志3.1.3.1 集群日志3.1.3…

嵌入式开发学习(STC51-3-点亮led)

内容 点亮第一个led; led闪烁; led流水灯; led简介 led即发光二极管,它具有单向导电性,通过5mA左右电流即可发光,电流越大,其亮度越强,但若电流过大,会烧毁二极管&…

【云原生】k8s组件架构介绍与K8s最新版部署

个人主页:征服bug-CSDN博客 kubernetes专栏:kubernetes_征服bug的博客-CSDN博客 目录 1 集群组件 1.1 控制平面组件(Control Plane Components) 1.2 Node 组件 1.3 插件 (Addons) 2 集群架构详细 3 集群搭建[重点] 3.1 mi…

快速压缩PDF文件的方法:这两种方法一定要学会!

随着PDF文件的增加,文件大小也会逐渐增大,给共享和存储带来了一定的挑战。为了解决这个问题,本文将介绍几个简单而有效的方法,即压缩PDF文件,以减小文件大小,提高共享和存储的效率。 使用在线压缩工具 在…

Dockerfile定制Tomcat镜像

Dockerfile中的打包命令 FROM : 以某个基础镜像作为此镜像的基础 RUN : RUN后面跟着linux常用命令,如RUN echo xxx >> xxx,注意,RUN 不能用于执行命令,因为每个RUN都是独立运行的,RUN 的cd对镜像中的…

我的128创作纪念日

机缘 写CSDN博客的时候,应该纯属一个巧合,还记得当初是和一个班上的同学一起记录学习笔记,最初是在博客园的平台上记录笔记,可以在以后复习时使用,后来我的同学开始推荐使用CSDN平台,于是我们两就转战CSDN…

第十二届金博奖启动,促进大小企业优势互联

8月3日,由博士科技联合深圳证券交易所、广东博士创新发展促进会共同举办的“走进深交所之国家级专精特新‘小巨人’企业融资路演暨第二十届金博奖启动仪式”成功举办。 华南理工大学教授,俄罗斯工程院外籍院士,广东博士创新发展促进会会长、国…

回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测

回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测预测效果基本介绍研究内容程序设计参考资料…

Last-Mile Embodied Visual Navigation 论文阅读

论文阅读 题目:Last-Mile Embodied Visual Navigation 作者:JustinWasserman, Karmesh Yadav 来源:CoRL 时间:2023 代码地址:https://jbwasse2.github.io/portfolio/SLING Abstract 现实的长期任务(例如…

9.物联网操作系统之软件定时器

一。软件定时器概念及应用 1.软件定时器定义 就是软件实现定时器。 2.FreeRTOS软件定时器介绍 如上图所示,Times的左边为设置定时器时间,设置方式可以为任务设置或者中断设置;Times的右边为定时器的定时相应,使用CalBack相应。 …

2023年华数杯数学建模C题思路代码分析 - 母亲身心健康对婴儿成长的影响

# 1 赛题 C 题 母亲身心健康对婴儿成长的影响 母亲是婴儿生命中最重要的人之一,她不仅为婴儿提供营养物质和身体保护, 还为婴儿提供情感支持和安全感。母亲心理健康状态的不良状况,如抑郁、焦虑、 压力等,可能会对婴儿的认知、情…

为Stable Diffusion web UI开发自己的插件实战

最近,Stable Diffusion AI绘画受到了广泛的关注和热捧。它的Web UI提供了了一系列强大的功能,其中特别值得一提的是对插件的支持,尤其是Controlnet插件的加持,让它的受欢迎程度不断攀升。那么,如果你有出色的创意&…

数学建模-元胞自动机

clc clear n 300; % 定义表示森林的矩阵大小 Plight 5e-6; Pgrowth 1e-2; % 定义闪电和生长的概率 UL [n,1:n-1]; DR [2:n,1]; % 定义上左,下右邻居 vegzeros(n,n); % 初始化表示森林的矩阵 imh ima…

【代码源每日一题div2 】简单的异或问题

简单的异或问题 - 题目 - Daimayuan Online Judge 题意: 思路: 首先这有一个结论:0~2^m-1的所有数进行XOR运算后,得到的结果是0。我们来证明一下这个结论: 比如m3时,一共是0 1 2 3 4 5 6 7,八…

【iOS RunLoop】

文章目录 前言-什么是RunLoop?默认情况下主线程的RunLoop原理 1. RunLoop对象RunLoop对象的获取 CFRunLoopRef源码部分(引入线程相关) 2. RunLoop和线程3. RunLoop相关的类RunLoop相关类的实现CFRunLoopModeRef五种运行模式CommonModes CFRun…

网站无法访问的常见原因

有多种问题可能会阻止用户访问您的网站。本文将解决无法访问网站,且没有错误消息指示确切问题的情况,希望对您有所帮助。 无法访问网站的常见原因有: (1)DNS 设置不正确。 (2)域名已过期。 (3)空白或没有索引文件。 (4)网络连接问题。 DNS 设…

Qt开发,编译报错:error: C2001: 常量中有换行符

一、问题描述 Qt开发,编译报错:error: C2001: 常量中有换行符 E:\work\xxx.cpp:1: warning: C4819: 该文件包含不能在当前代码页(936)中表示的字符。请将该文件保存为 Unicode 格式以防止数据丢失 E:\work\xxx.cpp:66: error: C2001: 常量中有换行符 E…