为什么list.sort()比Stream().sorted()更快?

真的更好吗?

先简单写个demo

List<Integer> userList = new ArrayList<>();Random rand = new Random();for (int i = 0; i < 10000 ; i++) {userList.add(rand.nextInt(1000));}List<Integer> userList2 = new ArrayList<>();userList2.addAll(userList);Long startTime1 = System.currentTimeMillis();userList2.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());System.out.println("stream.sort耗时:"+(System.currentTimeMillis() - startTime1)+"ms");Long startTime = System.currentTimeMillis();userList.sort(Comparator.comparing(Integer::intValue));System.out.println("List.sort()耗时:"+(System.currentTimeMillis()-startTime)+"ms");

输出

stream.sort耗时:62ms
List.sort()耗时:7ms

由此可见list原生排序性能更好。

能证明吗?

证据错了。

再把demo变换一下,先输出stream.sort

List<Integer> userList = new ArrayList<>();Random rand = new Random();for (int i = 0; i < 10000 ; i++) {userList.add(rand.nextInt(1000));}List<Integer> userList2 = new ArrayList<>();userList2.addAll(userList);Long startTime = System.currentTimeMillis();userList.sort(Comparator.comparing(Integer::intValue));System.out.println("List.sort()耗时:"+(System.currentTimeMillis()-startTime)+"ms");Long startTime1 = System.currentTimeMillis();userList2.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());System.out.println("stream.sort耗时:"+(System.currentTimeMillis() - startTime1)+"ms");

此时输出变成了

List.sort()耗时:68ms
stream.sort耗时:13ms

这能证明上面的结论错误了吗?

都不能。

两种方式都不能证明什么。

使用这种方式在很多场景下是不够的,某些场景下,JVM会对代码进行JIT编译和内联优化。

Long startTime = System.currentTimeMillis();
...
System.currentTimeMillis() - startTime

此时,代码优化前后执行的结果就会非常大。

基准测试是指通过设计科学的测试方法、测试工具和测试系统,实现对一类测试对象的某项性能指标进行定量的和可对比的测试。

基准测试使得被测试代码获得足够预热,让被测试代码得到充分的JIT编译和优化。

下面是通过JMH做一下基准测试,分别测试集合大小在100,10000,100000时两种排序方式的性能差异。

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.results.format.ResultFormatType;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 5)
@Fork(1)
@State(Scope.Thread)
public class SortBenchmark {@Param(value = {"100", "10000", "100000"})private int operationSize; private static List<Integer> arrayList;public static void main(String[] args) throws RunnerException {// 启动基准测试Options opt = new OptionsBuilder().include(SortBenchmark.class.getSimpleName()) .result("SortBenchmark.json").mode(Mode.All).resultFormat(ResultFormatType.JSON).build();new Runner(opt).run(); }@Setuppublic void init() {arrayList = new ArrayList<>();Random random = new Random();for (int i = 0; i < operationSize; i++) {arrayList.add(random.nextInt(10000));}}@Benchmarkpublic void sort(Blackhole blackhole) {arrayList.sort(Comparator.comparing(e -> e));blackhole.consume(arrayList);}@Benchmarkpublic void streamSorted(Blackhole blackhole) {arrayList = arrayList.stream().sorted(Comparator.comparing(e -> e)).collect(Collectors.toList());blackhole.consume(arrayList);}}

性能测试结果:

可以看到,list sort()效率确实比stream().sorted()要好。

为什么更好?

流本身的损耗

java的stream让我们可以在应用层就可以高效地实现类似数据库SQL的聚合操作了,它可以让代码更加简洁优雅。

但是,假设我们要对一个list排序,得先把list转成stream流,排序完成后需要将数据收集起来重新形成list,这部份额外的开销有多大呢?

我们可以通过以下代码来进行基准测试

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.results.format.ResultFormatType;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 5)
@Fork(1)
@State(Scope.Thread)
public class SortBenchmark3 {@Param(value = {"100", "10000"})private int operationSize; // 操作次数private static List<Integer> arrayList;public static void main(String[] args) throws RunnerException {// 启动基准测试Options opt = new OptionsBuilder().include(SortBenchmark3.class.getSimpleName()) // 要导入的测试类.result("SortBenchmark3.json").mode(Mode.All).resultFormat(ResultFormatType.JSON).build();new Runner(opt).run(); // 执行测试}@Setuppublic void init() {// 启动执行事件arrayList = new ArrayList<>();Random random = new Random();for (int i = 0; i < operationSize; i++) {arrayList.add(random.nextInt(10000));}}@Benchmarkpublic void stream(Blackhole blackhole) {arrayList.stream().collect(Collectors.toList());blackhole.consume(arrayList);}@Benchmarkpublic void sort(Blackhole blackhole) {arrayList.stream().sorted(Comparator.comparing(Integer::intValue)).collect(Collectors.toList());blackhole.consume(arrayList);}}

方法stream测试将一个集合转为流再收集回来的耗时。

方法sort测试将一个集合转为流再排序再收集回来的全过程耗时。

测试结果如下:

可以发现,集合转为流再收集回来的过程,肯定会耗时,但是它占全过程的比率并不算高。

因此,这部只能说是小部份的原因。

排序过程

我们可以通过以下源码很直观的看到。

  • 1 begin方法初始化一个数组。
  • 2 accept 接收上游数据。
  • 3 end 方法开始进行排序。
    这里第3步直接调用了原生的排序方法,完成排序后,第4步,遍历向下游发送数据。

所以通过源码,我们也能很明显地看到,stream()排序所需时间肯定是 > 原生排序时间。

只不过,这里要量化地搞明白,到底多出了多少,这里得去编译jdk源码,在第3步前后将时间打印出来。

这一步我就不做了。
感兴趣的朋友可以去测一下。

不过我觉得这两点也能很好地回答,为什么list.sort()比Stream().sorted()更快。

补充说明:

  1. 本文说的stream()流指的是串行流,而不是并行流。
  2. 绝大多数场景下,几百几千几万的数据,开心就好,怎么方便怎么用,没有必要去计较这点性能差异。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76754.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始:手把手搭建 RocketMQ 单节点、集群节点实例

&#x1f52d; 嗨&#xff0c;您好 &#x1f44b; 我是 vnjohn&#xff0c;在互联网企业担任 Java 开发&#xff0c;CSDN 优质创作者 &#x1f4d6; 推荐专栏&#xff1a;Spring、MySQL、Nacos、Java&#xff0c;后续其他专栏会持续优化更新迭代 &#x1f332;文章所在专栏&…

240. 搜索二维矩阵 II

240. 搜索二维矩阵 II 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a; 原题链接&#xff1a; 240. 搜索二维矩阵 II https://leetcode.cn/problems/search-a-2d-matrix-ii/description/ 完成情况&#xff1a; 解题思路&#xff1a; 从…

配置root账户ssh免密登录并使用docker-machine构建docker服务

简介 Docker Machine是一种可以在多种平台上快速安装和维护docker运行环境&#xff0c;并支持多种平台&#xff0c;让用户可以在很短时间内在本地或云环境中搭建一套docker主机集群的工具。 使用docker-machine命令&#xff0c;可以启动、审查、停止、重启托管的docker 也可以…

《向量数据库指南》——腾讯云向量数据库Tencent Cloud Vector DB正式上线公测!提供10亿级向量检索能力

8月1日,腾讯云向量数据库(Tencent Cloud Vector DB)已正式上线公测。在腾讯云官网上搜索“向量数据库”,就可以正式体验该产品。 腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、文本图像检索、自然语言处理等 AI 领域。…

ChatGPT已打破图灵测试,新的测试方法在路上

生信麻瓜的 ChatGPT 4.0 初体验 偷个懒&#xff0c;用ChatGPT 帮我写段生物信息代码 代码看不懂&#xff1f;ChatGPT 帮你解释&#xff0c;详细到爆&#xff01; 如果 ChatGPT 给出的的代码不太完善&#xff0c;如何请他一步步改好&#xff1f; 全球最佳的人工智能系统可以通过…

K8S kubeadm搭建

kubeadm搭建整体步骤 1&#xff09;所有节点进行初始化&#xff0c;安装docker引擎和kubeadm kubelet kubectl 2&#xff09;生成集群初始化配置文件并进行修改 3&#xff09;使用kubeadm init根据初始化配置文件生成K8S的master控制管理节点 4&#xff09;安装CNI网络插件&am…

【Ubuntu 18.04 搭建 DHCP 服务】

参考Ubuntu官方文档&#xff1a;https://ubuntu.com/server/docs/how-to-install-and-configure-isc-dhcp-server dhcpd.conf 手册页 配置&#xff1a;https://maas.io/docs/about-dhcp 实验环境规划 Ubuntu 18.04&#xff08;172.16.65.128/24&#xff09;dhcp服务端Ubuntu…

GD32F103VE点灯

GD32F103VE点灯主要用来学习端口引脚的输出配置。它由LED.c&#xff0c;LED.h&#xff0c;SoftDelay.c和main.c组成。 #include "gd32f10x.h" //使能uint8_t,uint16_t,uint32_t,uint64_t,int8_t,int16_t,int32_t,int64_t #include "SoftDelay.h"#include …

后端整理(集合框架、IO流、多线程)

1. 集合框架 Java集合类主要有两个根接口Collection和Map派生出来 Collection派生两个子接口 List List代表了有序可重复集合&#xff0c;可以直接根据元素的索引进行访问Set Set代表无序不可重复集合&#xff0c;只能根据元素本身进行访问 Map接口派生 Map代表的是存储key…

数据结构 二叉树(C语言实现)

绪论 雄关漫道真如铁&#xff0c;而今迈步从头越。 本章将开始学习二叉树&#xff08;全文共一万两千字&#xff09;&#xff0c;二叉树相较于前面的数据结构来说难度会有许多的攀升&#xff0c;但只要跟着本篇博客深入的学习也可以基本的掌握基础二叉树。 话不多说安全带系好&…

在windows下安装ruby使用gem

在windows下安装ruby使用gem 1.下载安装ruby环境2.使用gem3.gem换源 1.下载安装ruby环境 ruby下载地址 选择合适的版本进行下载和安装&#xff1a; 在安装的时候&#xff0c;请勾选Add Ruby executables to your PATH这个选项&#xff0c;添加环境变量&#xff1a; 安装Ruby成…

二进制安装K8S(单Master集群架构)

目录 一&#xff1a;操作系统初始化配置 1、项目拓扑图 2、服务器 3、初始化操作 二&#xff1a; 部署 etcd 集群 1、etcd 介绍 2、准备签发证书环境 3、master01 节点上操作 &#xff08;1&#xff09;生成Etcd证书 &#xff08;2&#xff09;创建用于存放 etcd 配置文…

.Net6 Web Core API --- Autofac -- AOP

目录 一、AOP 封装 二、类拦截 案例 三、接口拦截器 案例 AOP拦截器 可开启 类拦截器 和 接口拦截器 类拦截器 --- 只有方法标注 virtual 标识才会启动 接口拦截器 --- 所有实现接口的方法都会启动 一、AOP 封装 // 在 Program.cs 配置 builder.AddAOPExt();//自定义 A…

企业电子招标采购系统源码Spring Boot + Mybatis + Redis + Layui + 前后端分离 构建企业电子招采平台之立项流程图 tbms

&#xfeff; 项目说明 随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大&#xff0c;公司对内部招采管理的提升提出了更高的要求。在企业里建立一个公平、公开、公正的采购环境&#xff0c;最大限度控制采购成本至关重要。符合国家电子招投标法律法规及相关规范&am…

Spring IOC

◆ 传统Javaweb开发的困惑 ◆ IoC、DI和AOP思想提出 ◆ Spring框架的诞生 Spring | Home IOC控制反转&#xff1a;BeanFactory 快速入门 package com.xiaolin.service.Impl;import com.xiaolin.dao.UserDao; import com.xiaolin.service.UserService;public class UserServic…

论文浅尝 | 预训练Transformer用于跨领域知识图谱补全

笔记整理&#xff1a;汪俊杰&#xff0c;浙江大学硕士&#xff0c;研究方向为知识图谱 链接&#xff1a;https://arxiv.org/pdf/2303.15682.pdf 动机 传统的直推式(tranductive)或者归纳式(inductive)的知识图谱补全(KGC)模型都关注于域内(in-domain)数据&#xff0c;而比较少关…

Java版本spring cloud + spring boot企业电子招投标系统源代码 tbms

​ 功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为…

【机器学习】Overfitting and Regularization

Overfitting and Regularization 1. 过拟合添加正则化2. 具有正则化的损失函数2.1 正则化线性回归的损失函数2.2 正则化逻辑回归的损失函数 3. 具有正则化的梯度下降3.1 使用正则化计算梯度&#xff08;线性回归 / 逻辑回归&#xff09;3.2 正则化线性回归的梯度函数3.3 正则化…

PyTorch中加载模型权重 A匹配B|A不匹配B

在做深度学习项目时&#xff0c;从头训练一个模型是需要大量时间和算力的&#xff0c;我们通常采用加载预训练权重的方法&#xff0c;而我们往往面临以下几种情况&#xff1a; 未修改网络&#xff0c;A与B一致 很简单&#xff0c;直接.load_state_dict() net ANet(num_cla…

小鱼深度产品测评之:阿里云容器服务器ASK,一款不需购买节点,即可直接部署容器应用。

容器服务器ASK测评 1、引言2、帮助文档3、集群3.1集群列表3.1.1 详情3.1.1.1概览 tab3.1.1.2基本信息 tab3.1.1.4集群资源 tab3.1.1.5 集群日志 tab3.1.1.6 集群任务 tab 3.1.2 应用管理3.1.2.1 详情3.1.2.2 详情3.1.2.3 伸缩3.1.2.4 监控 3.1.3 查看日志3.1.3.1 集群日志3.1.3…