音频客观感知MOS对比,对ViSQOL、PESQ、MosNet(神经网络MOS分)和polqa一致性对比和可信度验证

原创:转载需附链接:
https://blog.csdn.net/qq_37100442/article/details/132057139?spm=1001.2014.3001.5502

一、背景

Mos分评价音质重要指标,最近也有很多机构和公司在研究适合自己的评价体系。目前Mos分主要分为主观评测和客观感知评价。其中客观感知评价由于方便和节省人力,被大众研究。本文章以标准polqa的mos分为可信前提,验证visqol、pesq、mosnet与polqa的一致性,以及visqol的可信度验证;主要用于 编解码、 降噪、回声消除等算法的感知效果进行打分,从而促进算法的迭代和可信度;

二、评价方式综述

       1、主观评价

               1) 优点主观测试是音频评价的黄金准则,最符合人的实际听感。

               2) 缺点主观评测费时费力,测试者太少、测试者不规范等都会带来测试误差;

               3) 常用方法:AB-TEST, MUSHAR

        2、客观打分

                1) 缺点:不能够完全符合人的听觉感知,存在听感好打分低的情况;

                2) 优点:方便测试和开发人员,快速验证语音的相对质量,方便日常工作,提升开发                         和测试效率;

                3) 常用方案:有参考(POLQA, PESQ, VISQOL)和无参考(ITU-TP.1201传统方法                          和  MOSNET的AI打分)

二、打分维度和一致性对比

         1、打分维度:

           结论:Visqol支持对时间帧和频率轴的各个频带进行打分(如下图所示),并且支持16khz和48khz;pesq只有最后的评分结果,拿不到时间和频率的细节打分,并且仅支持8kh和16khz打分;Mosnet为无参考打分;

2、一致性对比:

         结论:visqol和polqa的一致性更高, pesq颗粒度不够, mosnet(AI无参考模型)表现最差;

注:SMD48和SMD49,SMD50和SMD51,SMD271和SMD272这三对音频各对的音源相同,并且每对的后者都针对前者做了过认证优化。

三、visqol可信度测评

        从一些常见维度对语音进行损伤,测试visqol是否符合听感判断。

1、音量的影响:

        结论:音量差异影响不大,但是当降低-18db开始分数降低;

​​​​2、混响的影响:

        结论:混响音响较大,加入混响分数就开始降低,但是混响大小影响有规律

3、噪音的影响:

      结论:噪音影响很大,加入噪音分数就明显降低,但是不同信噪比变化有规律

4、频带缺失的影响

        结论:频带缺失影响打分较大,但是不同的频带模型还是能够匹配降低不同的分值;

四、总结

        visqol和polqa有较高的一致性(可能有幸存者偏差,但是拿到的数据是我们过认证的随机音频),visqol也存在和听感不符合的打分,例如加入轻微混响和噪音都会对打分有影响;但是混响和噪音的影响随着RT60和SNR的变化是有规律的,如果在降噪和混响模型的测试,也具相对意义,可以进行研发的自测;

参考文献:

       1、 https://github.com/google/visqol

       2、Objective Measure of Perceptual Audio Quality

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/79235.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.6 实现卷积神经网络LeNet训练并预测手写体数字

模型架构 代码实现 import torch from torch import nn from d2l import torch as d2lnet nn.Sequential(nn.Conv2d(1,6,kernel_size5,padding2),nn.Sigmoid(),#padding2补偿5x5卷积核导致的特征减少。nn.AvgPool2d(kernel_size2,stride2),nn.Conv2d(6,16,kernel_size5),nn.S…

黑马大数据学习笔记5-案例

目录 需求分析背景介绍目标需求数据内容DBeaver连接到Hive建库建表加载数据 ETL数据清洗数据问题需求实现查看结果扩展 指标计算需求需求指标统计 可视化展示BIFineBI的介绍及安装FineBI配置数据源及数据准备 可视化展示 P73~77 https://www.bilibili.com/video/BV1WY4y197g7?…

宋浩概率论笔记(三)随机向量/二维随机变量

第三更:本章的内容最重要的在于概念的理解与抽象,二重积分通常情况下不会考得很难。此外,本次暂且忽略【二维连续型随机变量函数的分布】这一章节,非常抽象且难度较高,之后有时间再更新。

回归决策树模拟sin函数

# -*-coding:utf-8-*- import numpy as np from sklearn import tree import matplotlib.pyplot as pltplt.switch_backend("TkAgg") # 创建了一个随机数生成器对象 rng rngnp.random.RandomState(1) print("rng",rng) #5*rng.rand(80,1)生成一个80行、1列…

恒盛策略:上交所过户费收费标准?

随着我国股市的发展,股票买卖所的过户费成为了广阔投资者关注的焦点之一。在我国股票商场中,上交所是最重要的买卖所之一,因而上交所过户费的收费规范备受到了广泛关注。那么,上交所过户费的收费规范究竟怎么拟定?对投…

【Docker】Docker私有仓库的使用

目录 一、搭建私有仓库 二、上传镜像到私有仓库 三、从私有仓库拉取镜像 一、搭建私有仓库 首先我们需要拉取仓库的镜像 docker pull registry 然后创建私有仓库容器 docker run -it --namereg -p 5000:5000 registry 这个时候我们可以打开浏览器访问5000端口看是否成功&…

python-opencv对极几何 StereoRectify

OpenCV如何正确使用stereoRectify函数 函数介绍 用于双目相机的立体校正环节中,这里只谈谈这个函数怎么使用,参数具体指哪些函数参数 随便去网上一搜或者看官方手册就能得到参数信息,但是!!相对关系非常容易出错&…

【MySQL】事务的多版本并发控制(MVCC)

目录 一、数据库并发的三种场景二、MVCC2.1 三个记录隐藏字段2.2 undo log(撤销日志)2.3 模拟MVCC2.3.1 模拟更新(update)2.3.1 模拟删除(delete)2.3.1 模拟插入(insert)2.3.1 模拟查…

maven中常见问题

文章目录 一、配置项提示二、父子打包三、打包之后不显示target四、自定义打包之后的jar包名称五、整个项目打包5.1、父项目管理插件和微服务打包 一、配置项提示 SpringBoot中提示错误信息 表示的是SpringBoot中的注释提示没有配置!那么可以来使用一下springboot官…

安全学习DAY14_JS信息打点

信息打点——前端JS框架 文章目录 信息打点——前端JS框架小节概述-思维导图JS安全概述什么是JS渗透测试?前后端差异JS安全问题流行的Js框架如何判定JS开发应用? 测试方法(JS文件的获取以及分析方法1、手工搜索分析2、半自动Burp分析插件介绍…

problem(3):python IDE和python解释器

为什么写这篇文章呢?遇到了下面的问题,相同的解释器,如果运行angr库的代码,会出现 这样的情况,但是用spyder IDE 会显示正常,很奇怪 应该就是IDE的原因 IDE的循环导入问题 检查IDE配置: 如果可…

引流精准客源方法,学会这一招就够你用的了

科思创业汇 大家好,这里是科思创业汇,一个轻资产创业孵化平台。赚钱的方式有很多种,我希望在科思创业汇能够给你带来最快乐的那一种! 第一,你要想一想,你想吸引什么样的人? 您的排水目的是推…

构建语言模型:BERT 分步实施指南

学习目标 了解 BERT 的架构和组件。了解 BERT 输入所需的预处理步骤以及如何处理不同的输入序列长度。获得使用 TensorFlow 或 PyTorch 等流行机器学习框架实施 BERT 的实践知识。了解如何针对特定下游任务(例如文本分类或命名实体识别)微调 BERT。为什么我们需要 BERT? 正…

Vue3+SpringBoot快速开发模板

起因:个人开发过程经常会使用到Vue3SpringBoot技术栈来开发项目,每次在项目初始化时都需要涉及一些重复的整理工作,于是结合一些个人觉得不错的前后端模板进行整合,打通一些大多数项目都需要的实现的基础功能,以便于快…

Spring 事务管理

目录 1. 事务管理 1.1. Spring框架的事务支持模型的优势 1.1.1. 全局事务 1.1.2. 本地事务 1.1.3. Spring框架的一致化编程模型 1.2. 了解Spring框架的事务抽象(Transaction Abstraction) 1.2.1. Hibernate 事务设置 1.3. 用事务同步资源 1.3.1…

协议,序列化,反序列化,Json

文章目录 协议序列化和反序列化网络计算器protocol.hppServer.hppServer.ccClient.hppClient.cclog.txt通过结果再次理解通信过程 Json效果 协议 协议究竟是什么呢?首先得知道主机之间的网络通信交互的是什么数据,像平时使用聊天APP聊天可以清楚&#x…

springboot 对接 minio 分布式文件系统

1. minio介绍 Minio 是一个基于Go语言的对象存储服务。它实现了大部分亚马逊S3云存储服务接口,可以看做是是S3的开源版本,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象…

npm install时出现的问题Failed at the node-sass@4.14.1 postinstall script

从阿里云上拉取下来项目后,首先使用npm install 命令进行安装所需依赖,意想不到的事情发生了,报出了Failed at the node-sass4.14.1 postinstall script,这个问题,顿时一脸懵逼;询问前端大佬,给…

内存快照:宕机后,Redis如何实现快速恢复?RDB

AOF的回顾 回顾Redis 的AOF的持久化机制。 Redis 避免数据丢失的 AOF 方法。这个方法的好处,是每次执行只需要记录操作命令,需要持久化的数据量不大。一般而言,只要你采用的不是 always 的持久化策略,就不会对性能造成太大影响。 …

CS 144 Lab Six -- building an IP router

CS 144 Lab Six -- building an IP router 引言路由器的实现测试 对应课程视频: 【计算机网络】 斯坦福大学CS144课程 Lab Six 对应的PDF: Lab Checkpoint 5: building an IP router 引言 在本实验中,你将在现有的NetworkInterface基础上实现一个IP路由器&#xf…