【机器学习 | 决策树】利用数据的潜力:用决策树解锁洞察力

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

决策树

1.1 分类

决策树是一种基于树形结构的分类模型,它通过对数据属性的逐步划分,将数据集分成多个小的决策单元。每个小的决策单元都对应着一个叶节点,在该节点上进行分类决策。决策树的核心是如何选择最优的分割属性。常见的决策树算法有ID3、C4.5和CART。

决策树的输入数据主要包括训练集和测试集。训练集是已知类别的样本集,测试集则是需要分类的未知样本集。

具体来说,构建决策树的过程可以分为如下几个步骤:

  1. 选择最优特征。在构建决策树时,需要从当前样本集合中选择一个最优的特征作为当前节点的划分属性。通常使用信息增益、信息增益比或基尼指数等指标来评估各个特征的划分能力,并选取最优特征。
  2. 划分子集。根据选取的最优特征,将当前样本集合划分成若干个子集。每个子集对应于一个子节点,且该节点所代表的样本集合与其父节点的样本集合不重复。
  3. 递归构建决策树。对于每个子节点,重复前两个步骤,直到所有的样本都被分配到叶子节点上,并且每个叶子节点对应着一个类别。
  4. 剪枝操作。由于决策树容易出现过拟合,因此需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

在进行分类时,对输入测试样本,按照各个属性的划分方式逐步匹配,最终到达某个叶子节点,并将该测试样本归为叶子节点所代表的类别。决策树的输出结果就是针对测试样本的分类结果,即该测试样本所属的类别。

决策树的优点在于易于理解和解释,能够处理不同类型的数据,且不需要对数据进行预处理。但是,决策树容易出现过拟合问题,因此在构建决策树时需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

1.1.1 案例

假设我们要构建一个决策树来预测一个人是否会购买某个产品。我们将使用以下特征来进行预测:

  1. 年龄:年龄范围在18岁到65岁之间。
  2. 性别:男性或女性。
  3. 收入:收入范围在0到100,000之间。

我们有一个包含以下数据的训练集:

编号年龄性别收入购买
125男性30,000
235女性40,000
345女性80,000
420男性10,000
555男性60,000
660女性90,000
730男性50,000
840女性75,000

现在,我们将使用这些数据来构建一个决策树模型。

首先,我们选择一个特征来作为根节点。我们可以使用信息增益或基尼不纯度等指标来选择最佳特征。在这个例子中,我们选择使用信息增益。

基尼指数和信息增益都是用于决策树中特征选择的指标,它们各有优劣。

基尼指数是一种衡量数据集纯度或不确定性的指标,常用于决策树算法中的特征选择。它基于基尼系数的概念,用于度量从数据集中随机选择两个样本,其类别标签不一致的概率

基尼指数的计算公式如下:
G i n i ( D ) = 1 − Σ ( p i ) 2 Gini(D) = 1 - Σ (p_i)^2 Gini(D)=1Σ(pi)2

其中,Gini(D)表示数据集D的基尼指数,p_i表示数据集D中第i个类别的样本所占比例。

基尼指数的取值范围为0到1,数值越小表示数据集的纯度越高,即样本的类别越一致。当数据集D中只包含一种类别的样本时,基尼指数为0,表示数据集完全纯净。当数据集D中的样本类别均匀分布时,基尼指数最大(即值越小),为1,表示数据集的不确定性最高。

在决策树算法中,基尼指数被用于衡量选择某个特征进行划分后,数据集的纯度提升程度。通过计算每个特征的基尼指数,选择基尼指数最小的特征作为划分依据,以达到最大程度地减少数据集的不确定性。

计算每个特征的信息增益:

  • 年龄的信息增益:0.029
  • 性别的信息增益:0.152
  • 收入的信息增益:0.048

根据信息增益,我们选择性别作为根节点。

信息增益是一种用于选择决策树节点的指标,它衡量了在选择某个特征作为节点后,数据集的纯度提高了多少。信息增益的计算基于信息熵的概念。

信息熵是用来衡量数据集的混乱程度或不确定性的度量。对于一个二分类问题(如购买与否),信息熵的计算公式如下 (多分类也一样,每个不题类别求和):

E n t r o p y ( S ) = − p ( Y e s ) ∗ l o g 2 ( p ( Y e s ) ) − p ( N o ) ∗ l o g 2 ( p ( N o ) ) Entropy(S) = -p(Yes) * log2(p(Yes)) - p(No) * log2(p(No)) Entropy(S)=p(Yes)log2(p(Yes))p(No)log2(p(No))

其中,S是数据集,p(Yes)和p(No)分别是购买为"是"和"否"的样本在数据集中的比例。(信息熵代表了分布越平均,样本信息含量越高,不确定性越大,信息熵越大,分布越不均匀,占比越大,信息熵会趋于0。所以以信息熵大小来确定分类,就是为了把一些小范围的集合分离出去)

信息增益的计算公式如下(不同类别信息熵相加):

G a i n ( S , A ) = E n t r o p y ( S ) − ∑ ( ∣ S v ∣ / ∣ S ∣ ) ∗ E n t r o p y ( S v ) Gain(S, A) = Entropy(S) - ∑(|Sv| / |S|) * Entropy(Sv) Gain(S,A)=Entropy(S)(Sv∣/∣S)Entropy(Sv)

其中,S是数据集,A是要计算信息增益的特征,Sv是特征A的某个取值对应的子集,|Sv|是子集Sv的样本数量,|S|是数据集S的样本数量。 (通过这个子集数量控制其影响权重,然后确定信息增益最大的(即信息熵最小),白话就是选择一个分类中更主流的,特征更明显的)

信息增益越大,意味着使用特征A作为节点可以更好地分割数据集,提高纯度。

在我们的例子中,我们计算了每个特征的信息增益,并选择了具有最大信息增益的特征作为根节点。然后,我们根据根节点的取值将数据集分割成子集,并对每个子集计算信息增益,以选择下一个节点。这个过程一直持续到满足停止条件为止,例如子集中的样本都属于同一类别或达到了预定的树的深度。

总结以下是基尼指数和信息增益的优缺点

优点:

  • 基尼指数:基尼指数是一种衡量不纯度的指标,它在计算上比信息增益更简单和高效。在处理大规模数据集时,基尼指数的计算速度通常比信息增益快。(单纯计算特征分类占比,占比平方
  • 信息增益:信息增益是一种衡量特征对于分类任务的贡献程度的指标。它基于信息论的概念,可以更好地处理多分类问题。信息增益在处理不平衡数据集时表现较好,能够更好地处理类别不均衡的情况。(除了计算特征分类占比,还添加了一个log函数,log比例乘上占比,使其贡献度分类占比大小情况得到增益

缺点:

  • 基尼指数:基尼指数只考虑了特征的不纯度,而没有考虑特征的取值个数。这意味着基尼指数可能会偏向具有更多取值的特征。在处理具有大量取值的特征时,基尼指数可能会导致决策树偏向这些特征。(基尼指数只要是要这个阈值,节点,能分出去的样本比例最大有多大,最大越大,越倾向于)
  • 信息增益:信息增益对于具有较多取值的特征有一定的偏好,因为它倾向于选择具有更多分支的特征。这可能导致决策树过于复杂,容易过拟合训练数据(树的深度不要太深)。(信息增益根据一种信息学的信息熵,根据其性质,分类越平均越大,分类占比大越小的一个性质,来分节点。

综上所述,基尼指数和信息增益在不同的情况下有不同的优劣。在实际应用中,可以根据具体的问题和数据集的特点选择适合的指标。

接下来,我们根据性别的取值(男性或女性)将数据集分割成两个子集。

对于男性子集:

编号年龄收入购买
12530,000
42010,000
55560,000
73050,000

对于女性子集:

编号年龄收入购买
23540,000
34580,000
66090,000
84075,000

对于男性子集,我们可以看到购买的结果是"是"和"否"都有,所以我们需要进一步划分。我们选择年龄作为下一个节点。

对于年龄的取值(小于等于30岁和大于30岁):

对于小于等于30岁的子集:

编号收入购买
130,000
410,000
750,000

对于大于30岁的子集:

编号收入购买
560,000

对于小于等于30岁的子集,购买的结果都是"否",所以我们不需要再进行划分。

对于大于30岁的子集,购买的结果都是"是",所以我们不需要再进行划分。

对于女性子集,购买的结果都是"是",所以我们不需要再进行划分。

最终的决策树如下所示:

性别 = 男性:年龄 <= 30岁: 否年龄 > 30岁: 是
性别 = 女性: 是

这就是一个简单的决策树的例子。根据输入的特征,决策树可以根据特征的取值进行预测。请注意,这只是一个简单的示例,实际上,决策树可以有更多的特征和更复杂的结构。

首先,我们使用scikit-learn库来实现决策树:

from sklearn import tree
import numpy as np# 数据集
X = np.array([[25, 1, 30000],[35, 0, 40000],[45, 0, 80000],[20, 1, 10000],[55, 1, 60000],[60, 0, 90000],[30, 1, 50000],[40, 0, 75000]])Y = np.array([0, 0, 1, 0, 1, 1, 0, 1])# 创建决策树模型
clf = tree.DecisionTreeClassifier()# 训练模型
clf = clf.fit(X, Y)# 预测
print(clf.predict([[40, 0, 75000],[10, 0, 75000]]))  # 输出:[1, 0]

然后,我们不使用任何机器学习库来实现决策树:

import numpy as npclass Node:def __init__(self, predicted_class):self.predicted_class = predicted_class  # 预测的类别self.feature_index = 0  # 特征索引self.threshold = 0  # 阈值self.left = None  # 左子树self.right = None  # 右子树class DecisionTree:def __init__(self, max_depth=None):self.max_depth = max_depth  # 决策树的最大深度def fit(self, X, y):self.n_classes_ = len(set(y))  # 类别的数量self.n_features_ = X.shape[1]  # 特征的数量self.tree_ = self._grow_tree(X, y)  # 构建决策树def predict(self, X):return [self._predict(inputs) for inputs in X]  # 对输入数据进行预测def _best_gini_split(self, X, y):m = y.size  # 样本的数量if m <= 1:  # 如果样本数量小于等于1,无法进行分割return None, Nonenum_parent = [np.sum(y == c) for c in range(self.n_classes_)]  # 每个类别在父节点中的样本数量best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent)  # 父节点的基尼指数best_idx, best_thr = None, None  # 最佳分割特征索引和阈值for idx in range(self.n_features_):  # 遍历每个特征thresholds, classes = zip(*sorted(zip(X[:, idx], y)))  # 根据特征值对样本进行排序num_left = [0] * self.n_classes_  # 左子节点中每个类别的样本数量num_right = num_parent.copy()  # 右子节点中每个类别的样本数量,初始值为父节点的样本数量for i in range(1, m):  # 遍历每个样本c = classes[i - 1]  # 样本的类别num_left[c] += 1  # 更新左子节点中对应类别的样本数量num_right[c] -= 1  # 更新右子节点中对应类别的样本数量gini_left = 1.0 - sum((num_left[x] / i) ** 2 for x in range(self.n_classes_))  # 左子节点的基尼指数gini_right = 1.0 - sum((num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_))  # 右子节点的基尼指数gini = (i * gini_left + (m - i) * gini_right) / m  # 加权平均的基尼指数if thresholds[i] == thresholds[i - 1]:  # 如果特征值相同,则跳过(特征阈值)continueif gini < best_gini:  # 如果基尼指数更小,则更新最佳分割特征索引和阈值 (循环每个特征,和每个阈值,以求解最优分类best_gini = ginibest_idx = idxbest_thr = (thresholds[i] + thresholds[i - 1]) / 2return best_idx, best_thr  # 返回最佳分割特征索引和阈值def _best_gain_split(self, X, y):m = y.size  # 样本的数量if m <= 1:  # 如果样本数量小于等于1,无法进行分割return None, Nonenum_parent = [np.sum(y == c) for c in range(self.n_classes_)]  # 计算每个类别的样本数量best_gain = -1  # 初始化最佳信息增益best_idx, best_thr = None, None  # 初始化最佳特征索引和阈值for idx in range(self.n_features_):  # 遍历每个特征thresholds, classes = zip(*sorted(zip(X[:, idx], y)))  # 对每个特征值和类别标签进行排序num_left = [0] * self.n_classes_  # 初始化左子树的类别数量 (左边都是0,为0时自动计算为0) num_right = num_parent.copy()  # 右子树的类别数量初始化为父节点的类别数量 (右边是全部)for i in range(1, m):  # 遍历每个样本c = classes[i - 1]  # 获取当前样本的类别num_left[c] += 1  # 左子树的类别数量增加num_right[c] -= 1  # 右子树的类别数量减少entropy_parent = -sum((num / m) * np.log2(num / m) for num in num_parent if num != 0)  # 计算父节点的熵entropy_left = -sum((num / i) * np.log2(num / i) for num in num_left if num != 0)  # 计算左子树的熵entropy_right = -sum((num / (m - i)) * np.log2(num / (m - i)) for num in num_right if num != 0)  # 计算右子树的熵gain = entropy_parent - (i * entropy_left + (m - i) * entropy_right) / m  # 计算信息增益(分类后左右的信息熵最小)if thresholds[i] == thresholds[i - 1]:  # 如果当前样本的特征值和前一个样本的特征值相同,跳过(不一样才能分界)continueif gain > best_gain:  # 如果当前的信息增益大于最佳信息增益best_gain = gain  # 更新最佳信息增益best_idx = idx  # 更新最佳特征索引best_thr = (thresholds[i] + thresholds[i - 1]) / 2  # 更新最佳阈值 (循环每个样本的值,根据两份数据均值确定阈值,一直循环)return best_idx, best_thr  # 返回最佳特征索引和阈值def _grow_tree(self, X, y, depth=0):num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)]  # 计算每个类别的样本数量predicted_class = np.argmax(num_samples_per_class)  # 预测的类别为样本数量最多的类别 (即确定分到该分支样本最多的记为该类)node = Node(predicted_class=predicted_class)  # 创建节点if depth < self.max_depth:  # 如果当前深度小于最大深度idx, thr = self._best_gain_split(X, y)  # 计算最佳分割if idx is not None:  # 如果存在最佳分割indices_left = X[:, idx] < thr  # 左子树的样本索引 (第 idx特征中小于thr阈值的索引)X_left, y_left = X[indices_left], y[indices_left]  # 左子树的样本X_right, y_right = X[~indices_left], y[~indices_left]  # 右子树的样本node.feature_index = idx  # 设置节点的特征索引node.threshold = thr  # 设置节点的阈值node.left = self._grow_tree(X_left, y_left, depth + 1)  # 构建左子树node.right = self._grow_tree(X_right, y_right, depth + 1)  # 构建右子树return node  # 返回节点def _predict(self, inputs):node = self.tree_  # 获取决策树的根节点while node.left:  # 如果存在左子树if inputs[node.feature_index] < node.threshold:  # 如果输入样本的特征值小于阈值node = node.left  # 到左子树else:node = node.right  # 到右子树return node.predicted_class  # 返回预测的类别# 数据集
X = [[25, 1, 30000],[35, 0, 40000],[45, 0, 80000],[20, 1, 10000],[55, 1, 60000],[60, 0, 90000],[30, 1, 50000],[40, 0, 75000]]Y = [0, 0, 1, 0, 1, 1, 0, 1]# 创建决策树模型
clf = DecisionTree(max_depth=2)# 训练模型
clf.fit(np.array(X), np.array(Y))# 预测
print(clf.predict([[40, 0, 75000],[10, 0, 75000]]))  # 输出:[1, 0]

请注意,这个不使用任何机器学习库的决策树实现是一个基本的版本,它可能无法处理所有的情况,例如缺失值、分类特征等。在实际应用中,我们通常使用成熟的机器学习库,如scikit-learn,因为它们提供了更多的功能和优化。

1.2 回归

当决策树用于回归任务时,它被称为决策树回归模型。与分类树不同,决策树回归模型的叶子节点不再表示类别标签,而是表示一段连续区间或者一个数值。它同样基于树形结构,通过对数据特征的逐步划分,将数据集分成多个小的决策单元,并在每个叶子节点上输出一个预测值。

以下是决策树回归模型的详细原理:

  1. 划分过程

与分类树相似,决策树回归模型也采用递归二分的方式进行划分。具体来说,从根节点开始,选择一个最优特征和该特征的最优划分点。然后将数据集按照该特征的取值分为两部分,分别构建左右子树。重复以上步骤,直到满足停止条件,比如达到最大深度、划分后样本数少于阈值等。

  1. 叶子节点的输出值

当到达某个叶子节点时,该叶子节点的输出值就是训练集中该叶子节点对应的所有样本的平均值(或中位数等)

  1. 预测过程

对于一个测试样本,从根节点开始,按照各个特征的划分方式逐步匹配,最终到达某个叶子节点,并将该测试样本的预测值设为该叶子节点的输出值。

  1. 剪枝操作

与分类树一样,决策树回归模型也容易出现过拟合问题,因此需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

  1. 特点

决策树回归模型具有以下特点:

(1)易于解释:决策树回归模型能够直观地反映各个特征对目标变量的影响程度。

(2)非参数性:决策树回归模型不对数据分布做任何假设,适用于各种类型的数据。

(3)可处理多元特征:决策树回归模型可以同时处理多个输入特征。

(4)不需要数据正态化:决策树回归模型不需要对输入数据进行正态化等预处理。

在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/81224.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT充当客户端模拟浏览器等第三方客户端对https进行双向验证

在 ssl单向证书和双向证书校验测试及搭建流程 文章中&#xff0c;已经做了基于https的单向认证和双向认证&#xff0c;&#xff0c;&#xff0c; 在进行双向认证时&#xff0c;采用的是curl工具或浏览器充当客户端去验证。 此次采用QT提供的接口去开发客户端向服务器发送请求&a…

Wavefront .OBJ文件格式解读【3D】

OBJ&#xff08;或 .OBJ&#xff09;是一种几何定义文件格式&#xff0c;最初由 Wavefront Technologies 为其高级可视化器动画包开发。 该文件格式是开放的&#xff0c;已被其他 3D 图形应用程序供应商采用。 OBJ 文件格式是一种简单的数据格式&#xff0c;仅表示 3D 几何体&…

《吐血整理》高级系列教程-吃透Fiddler抓包教程(37)-掌握Fiddler中Fiddler Script用法你有多牛逼-下

1.简介 Fiddler是一款强大的HTTP抓包工具&#xff0c;它能记录所有客户端和服务器的http和https请求&#xff0c;允许你监视&#xff0c;设置断点&#xff0c;甚至修改输入输出数据. 使用Fiddler无论对开发还是测试来说&#xff0c;都有很大的帮助。Fiddler提供的功能基本上能…

SpringMVC的架构有什么优势?——表单和数据校验(四)

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

51单片机学习--DS18B20温度读取温度报警器

需要先编写OneWire模块&#xff0c;再在DS18B20模块中调用OneWire模块的函数 先根据原理图做好端口的声明&#xff1a; sbit OneWire_DQ P3^7;接下来像之前一样把时序结构用代码模拟出来&#xff1a; unsigned char OneWire_Init(void) {unsigned char i;unsigned char Ac…

JVM之类加载与字节码(一)

1.类文件结构 一个简单的HelloWorld.Java package cn.itcast.jvm.t5; // HelloWorld 示例 public class HelloWorld { public static void main(String[] args) { System.out.println("hello world"); } }编译为 HelloWorld.class 后的样子如下所示&#xff1a; […

ChatGPT发展到了什么程度?代码生成,程序员将被取代?

前言 ChatGPT 是一个基于人工智能的聊天机器人&#xff0c;由 OpenAI 开发。ChatGPT 的历史可以追溯到早期的语言模型&#xff0c;例如循环神经网络 (RNN) 和长短时记忆网络 (LSTM)。如今的 ChatGPT-3 则是最新的版本。 ChatGPT发展到了什么程度&#xff1f;代码生成&#xff0…

自动化处理,web自动化测试处理多窗口+切换iframe框架页总结(超细整理)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 web 自动化之处理…

【高级程序设计语言C++】红黑树

1. 红黑树的概念2. 红黑树的插入2.1. 情况12.2. 情况22.3. 情况32.4. 插入情况小总结 3. 红黑树与AVL树的对比4. 红黑树在线生成网站 1. 红黑树的概念 红黑树&#xff08;Red-Black Tree&#xff09;是一种自平衡的二叉搜索树&#xff0c;它在插入和删除操作时通过调整节点的颜…

Scrum是什么意思,Scrum敏捷项目管理工具有哪些?

一、什么是Scrum&#xff1f; Scrum是一种敏捷项目管理方法&#xff0c;旨在帮助团队高效地开展软件开发和项目管理工作。 Scrum强调迭代和增量开发&#xff0c;通过将项目分解为多个短期的开发周期&#xff08;称为Sprint&#xff09;&#xff0c;团队可以更好地应对需求变…

FFmpeg常见命令行(二):FFmpeg转封装

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》。本文是Android音视频任务列表的其中一个&#xff0c; 对应的要学习的内容是&#xff1a;如何使…

HttpRunner自动化测试之脚手架工具使用(一键搭建)

脚手架工具使用&#xff1a; 每一个成熟的系统工具&#xff0c;都会有对应的脚手架工具&#xff0c;它可以快速构建项目的必要目录&#xff0c;不必自己一个一个的配置与搭建&#xff0c;只需要执行一些命令即可。 httprunner也提供了脚手架工具&#xff0c;使用步骤如下&…

通过Idea部署Tomcat服务器(详细图文教学)

1.在idea中创建项目 有maven构建工具就创建maven&#xff0c;没有就正常创建一个普通的java程序 创建普通java项目 2.添加框架 3.配置 Tomcat 注意&#xff1a;创建web项目后我们需要配置tomcat才能运行&#xff0c;下面我们来进行配置。 4.添加部署 回到服务器 5.完善配置 6…

Excel表格(一)

1.单一栏的宽度和高度设置 2.大标题的跨栏居中 3.让单元格内的文字------自动适应 4.序号递增 5.货币符号 6.日期格式的选择 选到单元格&#xff0c;选中对应的日期格式 7.自动求和的计算 然后在按住回车键即可求出当前行的金额 点击自动求和 8.冻结表格栏 9.排序 1.单栏排序 …

【redis】SpringBoot集成redis

目录 1.添加redis依赖2.配置redis3.操作redis3.1 操作string 3.1 操作其它数据类型 4. Spring-Session基于Redis解决共享Session问题4.1 问题提出 4.1 添加依赖 4.2 修改配置4.3 存储和读取 1.添加redis依赖 方法①&#xff1a; <dependency><groupId>org.springf…

WordPress 子主题(child theme)介绍

经常开发WordPress主题的朋友往往会遇到一个困惑&#xff0c;虽然主题提供了默认设置&#xff0c;也自带了不少自定义功能&#xff0c;可以满足大部分的场景使用&#xff0c;但毕竟众口难调&#xff0c;一些个性化的需求难免无法满足&#xff0c;这时就必须得修改主题文件来实现…

【动态规划刷题 5】 最小路径和地下城游戏

最小路径和 链接: 64. 最小路径和 给定一个包含非负整数的 m x n 网格 grid &#xff0c;请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。 说明&#xff1a;每次只能向下或者向右移动一步。 输入&#xff1a;grid [[1,3,1],[1,5,1],[4,2,1]] 输…

使用 PowerShell 将 Excel 中的每个工作表单独另存为独立的文件

导语&#xff1a;在日常工作中&#xff0c;我们经常需要处理 Excel 文件。本文介绍了如何使用 PowerShell 脚本将一个 Excel 文件中的每个工作表单独另存为独立的 Excel 文件&#xff0c;以提高工作效率。 1. 准备工作 在开始之前&#xff0c;请确保已经安装了 Microsoft Exc…

Cocos基本介绍

一、下载Dashboard Cocos Creator 3.8 手册 - 安装和启动 二、编辑器结构 1.资源管理器&#xff1a;显示了项目资源文件夹(assets)中的所有资源 2.场景编译器&#xff1a;用于展示和编辑场景中可是内容的工作区域 3.层级管理器&#xff1a;用树状列表的形式展示场景中的所有…

pytest测试框架之fixture测试夹具详解

fixture的优势 ​ pytest框架的fixture测试夹具就相当于unittest框架的setup、teardown&#xff0c;但相对之下它的功能更加强大和灵活。 命名方式灵活&#xff0c;不限于unittest的setup、teardown可以实现数据共享&#xff0c;多个模块跨文件共享前置后置可以实现多个模块跨…