【Python机器学习】实验11 神经网络-感知器

文章目录

  • 人工神经网络
    • 感知机
      • 二分类模型
        • 算法
    • 1. 基于手写代码的感知器模型
      • 1.1 数据读取
      • 1.2 构建感知器模型
      • 1.3 实例化模型并训练模型
      • 1.4 可视化
    • 2. 基于sklearn的感知器实现
      • 2.1 数据获取与前面相同
      • 2.2 导入类库
      • 2.3 实例化感知器
      • 2.4 采用数据拟合感知器
      • 2.5 可视化
    • 实验1 将上面数据划分为训练数据和测试数据,并在Perpetron_model类中定义score函数,训练后利用score函数来输出测试分数
      • 1. 数据读取
      • 2. 划分训练数据和测试数据
        • 划分训练数据和测试数据
      • 3. 定义感知器类
        • 定义下面的实例方法score函数
      • 4. 实例化模型并训练模型
      • 5. 测试模型
        • 调用实例方法score函数

人工神经网络

感知机

1.感知机是根据输入实例的特征向量 x x x对其进行二类分类的线性分类模型:

f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=\operatorname{sign}(w \cdot x+b) f(x)=sign(wx+b)

感知机模型对应于输入空间(特征空间)中的分离超平面 w ⋅ x + b = 0 w \cdot x+b=0 wx+b=0

2.感知机学习的策略是极小化损失函数:

min ⁡ w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) \min _{w, b} L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) w,bminL(w,b)=xiMyi(wxi+b)

损失函数对应于误分类点到分离超平面的总距离。

3.感知机学习算法是基于随机梯度下降法的对损失函数的最优化算法,有原始形式和对偶形式。算法简单且易于实现。原始形式中,首先任意选取一个超平面,然后用梯度下降法不断极小化目标函数。在这个过程中一次随机选取一个误分类点使其梯度下降。

4.当训练数据集线性可分时,感知机学习算法是收敛的。感知机算法在训练数据集上的误分类次数 k k k满足不等式:

k ⩽ ( R γ ) 2 k \leqslant\left(\frac{R}{\gamma}\right)^{2} k(γR)2

当训练数据集线性可分时,感知机学习算法存在无穷多个解,其解由于不同的初值或不同的迭代顺序而可能有所不同。

二分类模型

f ( x ) = s i g n ( w ⋅ x + b ) f(x) = sign(w\cdot x + b) f(x)=sign(wx+b)

sign ⁡ ( x ) = { + 1 , x ⩾ 0 − 1 , x < 0 \operatorname{sign}(x)=\left\{\begin{array}{ll}{+1,} & {x \geqslant 0} \\ {-1,} & {x<0}\end{array}\right. sign(x)={+1,1,x0x<0

给定训练集:

T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}

定义感知机的损失函数

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w, b)=-\sum_{x_{i} \in M} y_{i}\left(w \cdot x_{i}+b\right) L(w,b)=xiMyi(wxi+b)


算法

随即梯度下降法 Stochastic Gradient Descent

随机抽取一个误分类点使其梯度下降。

w = w + η y i x i w = w + \eta y_{i}x_{i} w=w+ηyixi

b = b + η y i b = b + \eta y_{i} b=b+ηyi

当实例点被误分类,即位于分离超平面的错误侧,则调整 w w w, b b b的值,使分离超平面向该无分类点的一侧移动,直至误分类点被正确分类

拿出iris数据集中两个分类的数据和[sepal length,sepal width]作为特征

1. 基于手写代码的感知器模型

1.1 数据读取

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
# load data
iris = load_iris()
iris
{'data': array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2],[5.4, 3.9, 1.7, 0.4],[4.6, 3.4, 1.4, 0.3],[5. , 3.4, 1.5, 0.2],[4.4, 2.9, 1.4, 0.2],[4.9, 3.1, 1.5, 0.1],[5.4, 3.7, 1.5, 0.2],[4.8, 3.4, 1.6, 0.2],[4.8, 3. , 1.4, 0.1],[4.3, 3. , 1.1, 0.1],[5.8, 4. , 1.2, 0.2],[5.7, 4.4, 1.5, 0.4],[5.4, 3.9, 1.3, 0.4],[5.1, 3.5, 1.4, 0.3],[5.7, 3.8, 1.7, 0.3],[5.1, 3.8, 1.5, 0.3],[5.4, 3.4, 1.7, 0.2],[5.1, 3.7, 1.5, 0.4],[4.6, 3.6, 1. , 0.2],[5.1, 3.3, 1.7, 0.5],[4.8, 3.4, 1.9, 0.2],[5. , 3. , 1.6, 0.2],[5. , 3.4, 1.6, 0.4],[5.2, 3.5, 1.5, 0.2],[5.2, 3.4, 1.4, 0.2],[4.7, 3.2, 1.6, 0.2],[4.8, 3.1, 1.6, 0.2],[5.4, 3.4, 1.5, 0.4],[5.2, 4.1, 1.5, 0.1],[5.5, 4.2, 1.4, 0.2],[4.9, 3.1, 1.5, 0.2],[5. , 3.2, 1.2, 0.2],[5.5, 3.5, 1.3, 0.2],[4.9, 3.6, 1.4, 0.1],[4.4, 3. , 1.3, 0.2],[5.1, 3.4, 1.5, 0.2],[5. , 3.5, 1.3, 0.3],[4.5, 2.3, 1.3, 0.3],[4.4, 3.2, 1.3, 0.2],[5. , 3.5, 1.6, 0.6],[5.1, 3.8, 1.9, 0.4],[4.8, 3. , 1.4, 0.3],[5.1, 3.8, 1.6, 0.2],[4.6, 3.2, 1.4, 0.2],[5.3, 3.7, 1.5, 0.2],[5. , 3.3, 1.4, 0.2],[7. , 3.2, 4.7, 1.4],[6.4, 3.2, 4.5, 1.5],[6.9, 3.1, 4.9, 1.5],[5.5, 2.3, 4. , 1.3],[6.5, 2.8, 4.6, 1.5],[5.7, 2.8, 4.5, 1.3],[6.3, 3.3, 4.7, 1.6],[4.9, 2.4, 3.3, 1. ],[6.6, 2.9, 4.6, 1.3],[5.2, 2.7, 3.9, 1.4],[5. , 2. , 3.5, 1. ],[5.9, 3. , 4.2, 1.5],[6. , 2.2, 4. , 1. ],[6.1, 2.9, 4.7, 1.4],[5.6, 2.9, 3.6, 1.3],[6.7, 3.1, 4.4, 1.4],[5.6, 3. , 4.5, 1.5],[5.8, 2.7, 4.1, 1. ],[6.2, 2.2, 4.5, 1.5],[5.6, 2.5, 3.9, 1.1],[5.9, 3.2, 4.8, 1.8],[6.1, 2.8, 4. , 1.3],[6.3, 2.5, 4.9, 1.5],[6.1, 2.8, 4.7, 1.2],[6.4, 2.9, 4.3, 1.3],[6.6, 3. , 4.4, 1.4],[6.8, 2.8, 4.8, 1.4],[6.7, 3. , 5. , 1.7],[6. , 2.9, 4.5, 1.5],[5.7, 2.6, 3.5, 1. ],[5.5, 2.4, 3.8, 1.1],[5.5, 2.4, 3.7, 1. ],[5.8, 2.7, 3.9, 1.2],[6. , 2.7, 5.1, 1.6],[5.4, 3. , 4.5, 1.5],[6. , 3.4, 4.5, 1.6],[6.7, 3.1, 4.7, 1.5],[6.3, 2.3, 4.4, 1.3],[5.6, 3. , 4.1, 1.3],[5.5, 2.5, 4. , 1.3],[5.5, 2.6, 4.4, 1.2],[6.1, 3. , 4.6, 1.4],[5.8, 2.6, 4. , 1.2],[5. , 2.3, 3.3, 1. ],[5.6, 2.7, 4.2, 1.3],[5.7, 3. , 4.2, 1.2],[5.7, 2.9, 4.2, 1.3],[6.2, 2.9, 4.3, 1.3],[5.1, 2.5, 3. , 1.1],[5.7, 2.8, 4.1, 1.3],[6.3, 3.3, 6. , 2.5],[5.8, 2.7, 5.1, 1.9],[7.1, 3. , 5.9, 2.1],[6.3, 2.9, 5.6, 1.8],[6.5, 3. , 5.8, 2.2],[7.6, 3. , 6.6, 2.1],[4.9, 2.5, 4.5, 1.7],[7.3, 2.9, 6.3, 1.8],[6.7, 2.5, 5.8, 1.8],[7.2, 3.6, 6.1, 2.5],[6.5, 3.2, 5.1, 2. ],[6.4, 2.7, 5.3, 1.9],[6.8, 3. , 5.5, 2.1],[5.7, 2.5, 5. , 2. ],[5.8, 2.8, 5.1, 2.4],[6.4, 3.2, 5.3, 2.3],[6.5, 3. , 5.5, 1.8],[7.7, 3.8, 6.7, 2.2],[7.7, 2.6, 6.9, 2.3],[6. , 2.2, 5. , 1.5],[6.9, 3.2, 5.7, 2.3],[5.6, 2.8, 4.9, 2. ],[7.7, 2.8, 6.7, 2. ],[6.3, 2.7, 4.9, 1.8],[6.7, 3.3, 5.7, 2.1],[7.2, 3.2, 6. , 1.8],[6.2, 2.8, 4.8, 1.8],[6.1, 3. , 4.9, 1.8],[6.4, 2.8, 5.6, 2.1],[7.2, 3. , 5.8, 1.6],[7.4, 2.8, 6.1, 1.9],[7.9, 3.8, 6.4, 2. ],[6.4, 2.8, 5.6, 2.2],[6.3, 2.8, 5.1, 1.5],[6.1, 2.6, 5.6, 1.4],[7.7, 3. , 6.1, 2.3],[6.3, 3.4, 5.6, 2.4],[6.4, 3.1, 5.5, 1.8],[6. , 3. , 4.8, 1.8],[6.9, 3.1, 5.4, 2.1],[6.7, 3.1, 5.6, 2.4],[6.9, 3.1, 5.1, 2.3],[5.8, 2.7, 5.1, 1.9],[6.8, 3.2, 5.9, 2.3],[6.7, 3.3, 5.7, 2.5],[6.7, 3. , 5.2, 2.3],[6.3, 2.5, 5. , 1.9],[6.5, 3. , 5.2, 2. ],[6.2, 3.4, 5.4, 2.3],[5.9, 3. , 5.1, 1.8]]),'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),'frame': None,'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n                \n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...','feature_names': ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'],'filename': 'iris.csv','data_module': 'sklearn.datasets.data'}
# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.head()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)label
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
df.columns=["sepal length","sepal width","petal length","petal width","label"]
#查看标签元素列的元素种类和个数
df["label"].value_counts()
0    50
1    50
2    50
Name: label, dtype: int64
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
<matplotlib.legend.Legend at 0x215d7f87f40>

1

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
data[:,-1]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
y = np.array([1 if i == 1 else -1 for i in y])
y
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,  1,1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1])
X[:5],y[:5]
(array([[5.1, 3.5],[4.9, 3. ],[4.7, 3.2],[4.6, 3.1],[5. , 3.6]]),array([-1, -1, -1, -1, -1]))

w = w + η y i x i w = w + \eta y_{i}x_{i} w=w+ηyixi

b = b + η y i b = b + \eta y_{i} b=b+ηyi

1.2 构建感知器模型

y.shape
(100,)
class Perception_model:def __init__(self,n):self.w=np.zeros(n,dtype=np.float32)self.b=0self.l_rate=0.1def sign(self,x):y=np.dot(x,self.w)+self.breturn ydef fit(self,X_train,y_train):is_wrong=Truewhile is_wrong:is_wrong=Falsefor i in range(len(X_train)):if y_train[i]*self.sign(X_train[i])<=0:self.w=self.w+self.l_rate*np.dot(y_train[i],X_train[i])self.b=self.b+self.l_rate*y_train[i]is_wrong=True

1.3 实例化模型并训练模型

model=Perception_model(X.shape[1])
model.fit(X,y)

1.4 可视化

np.max(X[:,0]),np.min(X[:,0])
(7.0, 4.3)
X_fig=np.arange(int(np.min(X[:,0])),int(np.max(X[:,0])+1),0.5)
X_fig
#w[0]*x1+w[1]*x2+b=0
array([4. , 4.5, 5. , 5.5, 6. , 6.5, 7. , 7.5])
y1=-(model.w[0]*X_fig+model.b)/model.w[1]
plt.plot(X_fig,y1,"r-+")
plt.scatter(X[:50,0],X[:50,1],label=0)
plt.scatter(X[50:100,0],X[50:100,1],label=1)
plt.show()

2

2. 基于sklearn的感知器实现

2.1 数据获取与前面相同

2.2 导入类库

from sklearn.linear_model import Perceptron

2.3 实例化感知器

model=Perceptron(fit_intercept=True,max_iter=1000,shuffle=True)

2.4 采用数据拟合感知器

model.fit(X,y)
Perceptron()
model.coef_
array([[ 23.2, -38.7]])
model.intercept_
array([-5.])

2.5 可视化

# 画布大小
plt.figure(figsize=(6,4))# 中文标题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')X_fig=np.arange(int(np.min(X[:,0])),int(np.max(X[:,0])+1),0.5)
X_fig
y1=-(model.coef_[0][0]*X_fig+model.intercept_)/model.coef_[0][1]
plt.plot(X_fig,y1,"r-+")
plt.scatter(X[:50,0],X[:50,1],label=0)
plt.scatter(X[50:100,0],X[50:100,1],label=1)plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()

3

注意 !

在上图中,有一个位于左下角的蓝点没有被正确分类,这是因为 SKlearn 的 Perceptron 实例中有一个tol参数。

tol 参数规定了如果本次迭代的损失和上次迭代的损失之差小于一个特定值时,停止迭代。所以我们需要设置 tol=None 使之可以继续迭代:

model=Perceptron(fit_intercept=True,max_iter=1000,shuffle=True,tol=None)
model.fit(X,y)
Perceptron(tol=None)
# 画布大小
plt.figure(figsize=(6,4))# 中文标题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')X_fig=np.arange(int(np.min(X[:,0])),int(np.max(X[:,0])+1),0.5)
X_fig
y1=-(model.coef_[0][0]*X_fig+model.intercept_)/model.coef_[0][1]
plt.plot(X_fig,y1,"r-+")
plt.scatter(X[:50,0],X[:50,1],label=0)
plt.scatter(X[50:100,0],X[50:100,1],label=1)plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
plt.show()

4

现在可以看到,所有的两种鸢尾花都被正确分类了。

实验1 将上面数据划分为训练数据和测试数据,并在Perpetron_model类中定义score函数,训练后利用score函数来输出测试分数

1. 数据读取

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
# load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns=["sepal length","sepal width","petal length","petal width","label"]
data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
y = np.array([1 if i == 1 else -1 for i in y])

2. 划分训练数据和测试数据

from sklearn.model_selection import train_test_split

划分训练数据和测试数据

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)

3. 定义感知器类

定义下面的实例方法score函数

class Perception_model:def __init__(self,n):self.w=np.zeros(n,dtype=np.float32)self.b=0self.l_rate=0.1def sign(self,x):y=np.dot(x,self.w)+self.breturn ydef fit(self,X_train,y_train):is_wrong=Truewhile is_wrong:is_wrong=Falsefor i in range(len(X_train)):if y_train[i]*self.sign(X_train[i])<=0:self.w=self.w+self.l_rate*np.dot(y_train[i],X_train[i])self.b=self.b+self.l_rate*y_train[i]is_wrong=Truedef score(self,X_test,y_test):accuracy=0for i in range(len(X_test)):if self.sign(X_test[i])<=0 and y_test[i]==-1:accuracy+=1if self.sign(X_test[i])>0 and y_test[i]==1:accuracy+=1return accuracy/len(X_test)

4. 实例化模型并训练模型

model_1=Perception_model(len(X_train[0]))
model_1.fit(X_train,y_train)

5. 测试模型

调用实例方法score函数

model_1.score(X_test,y_test)
1.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/84613.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

保姆级Arcgis安装图文安装教程

参考视频&#xff1a;【钟老师arcGIS从放弃到入门】02软件下载与安装_哔哩哔哩_bilibili 安装包在视频简介中有 注释&#xff1a;安装过程中有犯错误&#xff0c;请耐心看完一遍再跟着操作 &#xff08;一&#xff09;安装包下载 下载视频中分享的压缩包(压缩包密码&#x…

【C++】二叉搜索树的模拟实现(K,KV树)递归与非递归方式

文章目录 前言一、K树1.结点的定义2.构造函数3.拷贝构造函数4.赋值运算符重载5.析构函数6.二叉搜索树的查找&#xff08;find&#xff09;1.非递归2.递归 7.二叉搜索树的插入&#xff08;Insert&#xff09;1.非递归2.递归 8.二叉搜素树的删除&#xff08;Erase&#xff09;1.非…

yolov5的报错

【定期水一期】 &#xff08;这个问题很抓马&#xff0c;可以看一下这篇文章&#xff1a;Git Bash 教程&#xff01;【不是所有人都会用Git】&#xff09; 一&#xff1a;没有cv2这个模块 解决方案&#xff1a; pip install opencv-python -i http://pypi.douban.com/simple/…

emqx-5.1.4开源版使用记录

emqx-5.1.4开源版使用记录 windows系统安装eqmx 去官网下载 emqx-5.1.4-windows-amd64.zip&#xff0c;然后找个目录解压 进入bin目录,执行命令启动emqx 执行命令 emqx.cmd start使用emqx 访问内置的web管理页面 浏览器访问地址 http://localhost:18083/#/dashboard/overv…

Git和GitHub

文章目录 1.Git介绍2. 常用命令3. Git分支操作4. Git团队协作机制5. GitHub操作6. IDEA集成Git7.IDEA操作GitHub8. Gitee 1.Git介绍 Git免费的开源的分布式版本控制系统&#xff0c;可以快速高效从小到大的各种项目 Git易于学习&#xff0c;占地面积小&#xff0c;性能快。它…

企业权限管理(七)-权限操作

1. 数据库与表结构 1.1 用户表 1.1.1 用户表信息描述 users 1.1.2 sql语句 CREATE TABLE users( id varchar2(32) default SYS_GUID() PRIMARY KEY, email VARCHAR2(50) UNIQUE NOT NULL, username VARCHAR2(50), PASSWORD VARCHAR2(50), phoneNum VARCHAR2(20), STATUS INT )…

SolidWorks二次开发系列入门100篇之98、99-分割、保存零件中的实体

从这四张图&#xff0c;看了来这个保存实体和分割图标是一样的&#xff0c;可能只是选项不一样&#xff0c;所以这里一起写了&#xff0c;不浪费时间。 经过了几个小时的研究&#xff0c;没搞定。大哭 CreateSaveBodyFeature这个没有api例子&#xff0c;2021上有例子&#xff…

使用Java根据表名导出与导入Sql

前言 很粗糙啊&#xff0c;有很多可以优化的地方&#xff0c;而且也不安全&#xff0c;但是临时用还是OK的&#xff0c;我这个是公司里面的单机软件&#xff0c;不联网。 嗨&#xff01;我是一名社交媒体增长黑客&#xff0c;很高兴能帮助您优化和丰富关于批量作业导出和导入…

nginx文件共享、服务状态和location模块的配置介绍

一.文件共享功能 1.清空html目录下文件并新建你要共享的文件 2.修改nginx.conf文件&#xff0c;开启autoindex功能 3.测试 二.状态模块 1.修改nginx.conf文件 2.测试 &#xff08;1&#xff09;使用刚才定义的IP/nginx_status进行访问 &#xff08;2&#xff09;status参…

贝锐蒲公英:快速搭建连锁门店监控体系,赋能企业高效管理

随着国民生活水平的提高和零售场景的变革&#xff0c;消费者对于餐饮类目的消费支出不断增加&#xff0c;线下社区生鲜商超作为下沉市场最主要的消费场景之一&#xff0c;蕴藏着巨大价值机会。 对于线下连锁生鲜超市而言&#xff0c;连锁门店多、员工多&#xff0c;门店管理时会…

FreeRTOS( 任务与中断优先级,临界保护)

资料来源于硬件家园&#xff1a;资料汇总 - FreeRTOS实时操作系统课程(多任务管理) 目录 一、中断优先级 1、NVIC基础知识 2、FreeRTOS配置NVIC 3、SVC、PendSV、Systick中断 4、不受FreeRTOS管理的中断 5、STM32CubeMX配置 二、任务优先级 1、任务优先级说明 2、任务…

数据结构笔记--链表经典高频题

目录 前言 1--反转单向链表 2--反转单向链表-II 3--反转双向链表 4--打印两个有序链表的公共部分 5--回文链表 6--链表调整 7--复制含有随机指针结点的链表 8--两个单链表相交问题 前言 面经&#xff1a; 针对链表的题目&#xff0c;对于笔试可以不太在乎空间复杂度&a…

SD-MTSP:蜘蛛蜂优化算法SWO求解单仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)

一、蜘蛛蜂优化算法SWO 蜘蛛蜂优化算法&#xff08;Spider wasp optimizer&#xff0c;SWO&#xff09;由Mohamed Abdel-Basset等人于2023年提出&#xff0c;该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为&#xff0c;具有搜索速度快&#xff0c;求解精度高的优势。蜘蛛蜂优化算…

Spring Gateway+Security+OAuth2+RBAC 实现SSO统一认证平台

背景&#xff1a;新项目准备用SSO来整合之前多个项目的登录和权限&#xff0c;同时引入网关来做后续的服务限流之类的操作&#xff0c;所以搭建了下面这个系统雏形。 关键词&#xff1a;Spring Gateway, Spring Security, JWT, OAuth2, Nacos, Redis, Danymic datasource, Jav…

竞赛项目 深度学习的口罩佩戴检测 - opencv 卷积神经网络 机器视觉 深度学习

文章目录 0 简介1 课题背景&#x1f6a9; 2 口罩佩戴算法实现2.1 YOLO 模型概览2.2 YOLOv32.3 YOLO 口罩佩戴检测实现数据集 2.4 实现代码2.5 检测效果 3 口罩佩戴检测算法评价指标3.1 准确率&#xff08;Accuracy&#xff09;3.2 精确率(Precision)和召回率(Recall)3.3 平均精…

ASP.NET Core中间件记录管道图和内置中间件

管道记录 下图显示了 ASP.NET Core MVC 和 Razor Pages 应用程序的完整请求处理管道 中间件组件在文件中添加的顺序Program.cs定义了请求时调用中间件组件的顺序以及响应的相反顺序。该顺序对于安全性、性能和功能至关重要。 内置中间件记录 内置中间件原文翻译MiddlewareDe…

【容器化】Oceanbase镜像构建及使用

通过该篇文章可以在国产X86-64或ARM架构上构建商业版oceanbase&#xff0c;只需要替换pkg安装包即可。下面截图主要以国产X86-64安装为例&#xff0c;作为操作截图&#xff1a; 镜像构建目录说明 pkg:用来存放安装包及脚本&#xff0c;抛出rpm其他是脚步&#xff0c;这些rpm包…

直接在html中引入Vue.js的cdn来实现Vue3的组合式API

Vue3的组合式API是使用setup函数来编写组件逻辑的。setup函数是Vue3中用于替代Vue2的选项API&#xff08;如data、methods等&#xff09;的一种方式。在setup函数中&#xff0c;你可以访问到一些特殊的响应式对象&#xff0c;并且可以返回一些可以在模板中使用的数据、方法等。…

Python编程——谈谈函数的定义、调用与传入参数

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 本文专栏&#xff1a;Python专栏 专栏介绍&#xff1a;本专栏为免费专栏&#xff0c;并且会持续更新python基础知识&#xff0c;欢迎各位订阅关注。 目录 一、理解函数 二、函数的定义 1、语法 2、定义一个…

【Linux】内核宏定义解释postcore_initcall,arch_initcall,subsys_initcall

postcore_initcall postcore_initcall(pcibus_class_init) 是一个宏&#xff0c;用于在Linux内核初始化过程中注册一个后期初始化函数。 这个宏的含义如下&#xff1a; postcore_initcall 是一个宏定义&#xff0c;用于指定注册的函数在内核初始化的哪个阶段执行。 pcibus_cl…