LiteFlow Spring boot使用方式

文章目录

    • 概述
    • LiteFlow框架的优势
    • 规则调用逻辑
    • 规则组件定义
    • 组件内数据获取
        • 通过 DefaultContext
            • 自定义上下文
        • 通过 组件规则定义数据
        • 通过预先传入数据

请添加图片描述

liteflow 使用

概述

在每个公司的系统中,总有一些拥有复杂业务逻辑的系统,这些系统承载着核心业务逻辑,几乎每个需求都和这些核心业务有关,这些核心业务业务逻辑冗长,涉及内部逻辑运算,缓存操作,持久化操作,外部资源调取,内部其他系统RPC调用等等。时间一长,项目几经易手,维护成本就会越来越高。各种硬代码判断,分支条件越来越多。代码的抽象,复用率也越来越低,各个模块之间的耦合度很高。一小段逻辑的变动,会影响到其他模块,需要进行完整回归测试来验证。如要灵活改变业务流程的顺序,则要进行代码大改动进行抽象,重新写方法。实时热变更业务流程,几乎很难实现。

如何打破僵局?LiteFlow为解耦逻辑而生,为编排而生,在使用LiteFlow之后,你会发现打造一个低耦合,灵活的系统会变得易如反掌!

LiteFlow是一个非常强大的现代化的规则引擎框架,融合了编排特性和规则引擎的所有特性。
在这里插入图片描述
组件可实时热更替,也可以给编排好的逻辑流里实时增加一个组件,从而改变你的业务逻辑。
在这里插入图片描述

LiteFlow框架的优势

如果你要对复杂业务逻辑进行新写或者重构,用LiteFlow最合适不过。它是一个编排式的规则引擎框架,组件编排,帮助解耦业务代码,让每一个业务片段都是一个组件。

利用LiteFlow,你可以将瀑布流式的代码,转变成以组件为核心概念的代码结构,这种结构的好处是可以任意编排,组件与组件之间是解耦的,组件可以用脚本来定义,组件之间的流转全靠规则来驱动。LiteFlow拥有开源规则引擎最为简单的DSL语法。十分钟就可上手。

规则调用逻辑

通过定义的 chainName 查询 chain表的配置 chainName 本身是唯一的,我这边使用方法采用uuid 加 时间戳截取的方式保持信息的唯一性

@Resource
private FlowExecutor flowExecutor;
// 方法内写
flowExecutor.execute2Resp(chainName, null, new DefaultContext());

规则组件定义

目前是通过java 编写组件
@LiteflowComponent 是 LiteFlow 框架中的一个注解,用于标记类作为 LiteFlow 组件。这个注解使得被标注的类能够参与流程编排,并允许你在流程定义中引用它们。通过这种方式,你可以轻松地将业务逻辑封装进组件中,并在需要时调用这些组件来执行特定的任务。
在内部可以使用 @Resource 注解调用其他方法
普通组件
用于流程往下继续执行 THEN 或者 WHEN

@Slf4j
@LiteflowComponent("deviceSendMessageCmp")
public class DeviceSendMessageCmp extends NodeComponent {@Overridepublic void process() throws Exception {}
}

判断组件
用于 IF AND OR 规则组装

/*** 属性判断流程处理*/
@Slf4j
@LiteflowComponent("attributeBooleanCmp")
public class AttributeBooleanCmp extends NodeBooleanComponent {@Overridepublic boolean processBoolean() throws Exception {}
}

组件内数据获取

通过 DefaultContext

LiteFlow提供了一个默认的数据上下文的实现:DefaultContext。这个默认的实现其实里面主要存储数据的容器就是一个Map。
你可以通过DefaultContext中的setData方法放入数据,通过getData方法获得数据。
DefaultContext虽然可以用,但是在实际业务中,用这个会存在大量的弱类型,存取数据的时候都要进行强转,颇为不方便。所以官方建议你自己去实现自己的数据上下文。

自定义上下文

你可以用你自己的任意的Bean当做上下文进行传入。LiteFlow对上下文的Bean没有任何要求。
自己定义的上下文实质上就是一个最简单的值对象,自己定义的上下文因为是强类型,更加贴合业务。
你可以像这样进行传入:

LiteflowResponse response = flowExecutor.execute2Resp("chain1", 流程初始参数, CustomContext.class);

传入之后, LiteFlow会在调用时进行初始化,给这个上下文分配唯一的实例。你在组件之中可以这样去获得这个上下文实例:

@LiteflowComponent("yourCmpId")
public class YourCmp extends NodeComponent {@Overridepublic void process() {CustomContext context = this.getContextBean(CustomContext.class);//或者你也可以用这个方法去获取上下文实例,如果你只有一个上下文,那么和上面是等价的//CustomContext context = this.getFirstContextBean();...}
}
通过 组件规则定义数据

好处 在调用组件时就拥有组件的对应参数信息
iteFlow支持了组件参数特性,你可以在EL语法中来给组件设置外置参数。
这对于相同组件的编排是非常有用的特性。
例如 :
可以塞入两条完全不一样的信息

THEN(a, b.data(cmpData), b.data(cmpData));

你可以使用data关键字来给某个组件设置外置参数,建议最好是JSON格式:

<flow><chain name="chain1">cmpData = '{"name":"jack","age":27,"birth":"1995-10-01"}';THEN(a, b.data(cmpData), c);</chain><chain name="chain2">cmpData = '{"name":"rose","age":20,"birth":"1997-07-01"}';WHEN(c, b.data(cmpData));</chain>
</flow>

上述表达式中,同一个b组件,在不同的chain中被赋予了不同的外置参数,运行中在组件中通过this.getCmpData方法也能拿到相应的参数。
如果上述对象是一个Json的数组,在组件中也可以通过getCmpDataList方法来获取。

@Component("b")
public class BCmp extends NodeComponent {@Overridepublic void process() {User user = this.getCmpData(User.class);...}
}
通过预先传入数据

在一个流程中,总会有一些初始的参数,比如订单号,用户Id等等一些的初始参数。这时候需要通过以下方法的第二个参数传入:

public LiteflowResponse execute2Resp(String chainId, Object param, Class<?>... contextBeanClazzArray)

请注意,这个流程入参,可以是任何对象,一般生产业务场景下,你可以把自己封装好的Bean传入。
这个值你可以通过以下的方法在组件中拿到:

@LiteflowComponent("a")
public class ACmp extends NodeComponent {@Overridepublic void process() {YourBean requestBean = this.getRequestData();}
}

在这里,流程入参可以是任何对象,如果你把数据上下文的实例传入了,并不意味着你拿到的相同类型的数据上下文中就是有值的。因为这2个对象根本就是2个实例。 流程入参只能通过this.getRequestData()去拿。 如果你真实目的是想提前传入初始化好的上下文对象,可以参考用初始化好的上下文传入这一章节。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8484.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

六、深入了解DI

依赖注入是⼀个过程&#xff0c;是指IoC容器在创建Bean时,去提供运⾏时所依赖的资源&#xff0c;⽽资源指的就是对象. 在上⾯程序案例中&#xff0c;我们使⽤了 Autowired 这个注解&#xff0c;完成了依赖注⼊的操作. 简单来说,就是把对象取出来放到某个类的属性中。 关于依赖注…

c++贪心

本篇文章&#xff0c;我将同大家一起学习c的贪心&#xff01;&#xff01;&#xff01; 目录 第一题 题目链接 题目解析 代码原理 代码编写 第二题 题目链接 题目解析 代码原理 代码编写 第三题 题目链接 题目解析 代码原理 代码编写 第四题 题目链接 题目解…

高低频混合组网系统中基于地理位置信息的信道测量算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 &#xff08;完整版代码包含详细中文注释和操作步骤视频&#xff09…

【Python实现机器遗忘算法】复现2020年顶会CVPR算法Selective Forgetting

【Python实现机器遗忘算法】复现2020年顶会CVPR算法Selective Forgetting 1 算法原理 Golatkar, A., Achille, A., & Soatto, S. (2020). Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Co…

Linux(NTP配置)

后面也会持续更新&#xff0c;学到新东西会在其中补充。 建议按顺序食用&#xff0c;欢迎批评或者交流&#xff01; 缺什么东西欢迎评论&#xff01;我都会及时修改的&#xff01; NTP环境搭建 服务端客户端192.168.111.10192.168.111.11Linux MySQL5.7 3.10.0-1160.el7.x86_…

神经网络|(四)概率论基础知识-古典概型

【1】引言 前序学习了线性回归的基础知识&#xff0c;了解到最小二乘法可以做线性回归分析&#xff0c;但为何最小二乘法如此准确&#xff0c;这需要从概率论的角度给出依据。 因此从本文起&#xff0c;需要花一段时间来回顾概率论的基础知识。 【2】古典概型 古典概型是我…

21款炫酷烟花合集

系列专栏 《Python趣味编程》《C/C趣味编程》《HTML趣味编程》《Java趣味编程》 写在前面 Python、C/C、HTML、Java等4种语言实现18款炫酷烟花的代码。 Python Python烟花① 完整代码&#xff1a;Python动漫烟花&#xff08;完整代码&#xff09; ​ Python烟花② 完整…

新项目上传gitlab

Git global setup git config --global user.name “FUFANGYU” git config --global user.email “fyfucnic.cn” Create a new repository git clone gitgit.dev.arp.cn:casDs/sawrd.git cd sawrd touch README.md git add README.md git commit -m “add README” git push…

Brightness Controller-源码记录

Brightness Controller 亮度控制 一、概述二、ddcutil 与 xrandr1. ddcutil2. xrandr 三、部分代码解析1. icons2. ui3. utilinit.py 一、概述 项目&#xff1a;https://github.com/SunStorm2018/Brightness.git 原理&#xff1a;Brightness Controlle 是我在 Ubuntu 发现上调…

机器学习-K近邻算法

文章目录 一. 数据集介绍Iris plants dataset 二. 代码三. k值的选择 一. 数据集介绍 鸢尾花数据集 鸢尾花Iris Dataset数据集是机器学习领域经典数据集&#xff0c;鸢尾花数据集包含了150条鸢尾花信息&#xff0c;每50条取自三个鸢尾花中之一&#xff1a;Versicolour、Setosa…

Day27-【13003】短文,线性表两种基本实现方式空间效率、时间效率比较?兼顾优点的静态链表是什么?如何融入空闲单元链表来解决问题?

文章目录 本次内容总览第四节&#xff0c;两种基本实现方式概览两种基本实现方式的比较元素个数n大于多少时&#xff0c;使用顺序表存储的空间效率才会更高&#xff1f;时间效率比较&#xff1f;*、访问操作&#xff0c;也就是读运算&#xff0c;读操作1、插入&#xff0c;2、删…

JavaSE第十一天——集合框架Collection

一、List接口 List接口是一个有序的集合&#xff0c;允许元素有重复&#xff0c;它继承了Collection接口&#xff0c;提供了许多额外的功能&#xff0c;比如基于索引的插入、删除和访问元素等。 常见的List接口的实现类有ArrayList、LinkedList和Vector。 List接口的实现类 …

数据结构与算法学习笔记----求组合数

数据结构与算法学习笔记----求组合数 author: 明月清了个风 first publish time: 2025.1.27 ps⭐️一组求组合数的模版题&#xff0c;因为数据范围的不同要用不同的方法进行求解&#xff0c;涉及了很多之前的东西快速幂&#xff0c;逆元&#xff0c;质数&#xff0c;高精度等…

kaggle社区LLM Classification Finetuning

之前有个一样的比赛&#xff0c;没去参加&#xff0c;现在弄了一个无限期的比赛出来 训练代码链接&#xff1a;fine_tune | Kaggle 推理代码链接&#xff1a;https://www.kaggle.com/code/linheshen/inference-llama-3-8b?scriptVersionId219332972 包链接&#xff1a;pack…

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning 1 算法原理 论文&#xff1a;Graves, L., Nagisetty, V., & Ganesh, V. (2021). Amnesiac machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 115…

51单片机开发:点阵屏显示数字

实验目标&#xff1a;在8x8的点阵屏上显示数字0。 点阵屏的原理图如下图所示&#xff0c;点阵屏的列接在P0端口&#xff0c;行接在74HC595扩展的DP端口上。 扩展口的使用详见&#xff1a;51单片机开发&#xff1a;IO扩展(串转并)实验-CSDN博客 要让点阵屏显示数字&#xff0…

买卖股票的最佳时机 II

hello 大家好&#xff01;今天开写一个新章节&#xff0c;每一天一道算法题。让我们一起来学习算法思维吧&#xff01; 问题分析 本题要求计算在可以多次买卖股票&#xff08;但任何时候最多只能持有一股股票&#xff0c;也可以在同一天买卖&#xff09;的情况下能获得的最大…

2024年度总结——理想的风,吹进现实

2024年悄然过去&#xff0c;留下了太多美好的回忆&#xff0c;不得不感慨一声时间过得真快啊&#xff01;旧年风雪尽&#xff0c;新岁星河明。写下这篇博客&#xff0c;记录我独一无二的2024年。这一年&#xff0c;理想的风终于吹进现实&#xff01; 如果用一句话总结这一年&am…

LosslessScaling-学习版[steam价值30元的游戏无损放大/补帧工具]

LosslessScaling 链接&#xff1a;https://pan.xunlei.com/s/VOHc-yZBgwBOoqtdZAv114ZTA1?pwdxiih# 解压后运行"A-绿化-解压后运行我.cmd"

CVE-2020-0796永恒之蓝2.0(漏洞复现)

目录 前言 产生原因 影响范围 漏洞复现 复现环境 复现步骤 防御措施 总结 前言 在网络安全的战场上&#xff0c;漏洞一直是攻防双方关注的焦点。CVE-2020-0796&#xff0c;这个被称为 “永恒之蓝 2.0” 的漏洞&#xff0c;一度引起了广泛的关注与担忧。它究竟是怎样的…