竞赛项目 深度学习花卉识别 - python 机器视觉 opencv

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习花卉识别 - python 机器视觉 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表

# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio))  # 测试样本数n_train = n_sample - n_val  # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels**定义函数get_batch,生成训练批次数据**# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像#   image_W, image_H, :设置好固定的图像高度和宽度#   设置batch_size:每个batch要放多少张图片#   capacity:一个队列最大多少定义函数get_batch,生成训练批次数据def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0])  # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch**model.py——CN模型构建**import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层#    with tf.variable_scope('dropout') as scope:#        drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**import input_dataimport model# 变量声明N_CLASSES = 4  # 四种花类型IMG_W = 64  # resize图像,太大的话训练时间久IMG_H = 64BATCH_SIZE = 20CAPACITY = 200MAX_STEP = 2000  # 一般大于10Klearning_rate = 0.0001  # 一般小于0.0001# 获取批次batchtrain_dir = 'F:/input_data'  # 训练样本的读入路径logs_train_dir = 'F:/save'  # logs存储路径# train, train_label = input_data.get_files(train_dir)train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)# 训练数据及标签train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 测试数据及标签val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)train_loss = model.losses(train_logits, train_label_batch)train_op = model.trainning(train_loss, learning_rate)train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)test_loss = model.losses(test_logits, val_label_batch)test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录summary_op = tf.summary.merge_all()# 产生一个会话sess = tf.Session()# 产生一个writer来写log文件train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)# 产生一个saver来存储训练好的模型saver = tf.train.Saver()# 所有节点初始化sess.run(tf.global_variables_initializer())# 队列监控coord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind]  # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))

5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/84930.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven 生成(打包)带有依赖的可以直接执行的一个 jar 包

在pom中增加如下内容 <build><plugins><plugin><artifactId>maven-assembly-plugin</artifactId><configuration><archive><manifest><mainClass>com.example.xxx.YourClass</mainClass></manifest></…

Windows和Linux系统上的矢量运算:指令级并行计算SIMD(SSE/AVX)应用细节以及相关跨平台的源码解释

注&#xff1a;本文的SIMD&#xff0c;指的是CPU(base intel x86 architecture)指令架构中的相关概念。不涉及GPU端的算力机制。下面的代码在Win10和Linux上均可用。 基本概念 SSE: Streaming SIMD Extensions, x86 architecture AVX: Advanced Vector Extensions SIMD&#…

Springboot 多数据源 dynamic-datasource动态添加移除数据源

0.前言 上一篇文章我们讲了如何通过多数据源组件&#xff0c;在Spring boot Druid 连接池项目中配置多数据源&#xff0c;并且通过DS注解的方式切换数据源&#xff0c;《Spring Boot 配置多数据源【最简单的方式】》。但是在多租户的业务场景中&#xff0c;我们通常需要手动的…

RabbitMQ 消息队列

文章目录 &#x1f370;有几个原因可以解释为什么要选择 RabbitMQ&#xff1a;&#x1f969;mq之间的对比&#x1f33d;RabbitMQ vs Apache Kafka&#x1f33d;RabbitMQ vs ActiveMQ&#x1f33d;RabbitMQ vs RocketMQ&#x1f33d;RabbitMQ vs Redis &#x1f969;linux docke…

C语言案例 球落地反弹-10

题目&#xff1a;一球从100米高度自由落下&#xff0c;每次落地后反跳回原高度的一半;再落下&#xff0c;求它在第10次落地时&#xff0c;共经过多少米第10次反弹多高&#xff1f; 程序分析 球在落地后会反弹为原高度的一半&#xff0c;若设高度为h&#xff0c;那么每次落地的…

MATLAB程序初始化OpenFOAM颗粒位置

问题引入 在OpenFOAM的颗粒两相流求解器中&#xff0c;我们可以采用manualInjection的方式进行自定义颗粒的初始位置&#xff0c;这个命令十分方便&#xff0c;在CFDEM中也有类似的命令&#xff0c;不过CFDEM中的命令更加强大&#xff0c;我们不仅可以定义颗粒的初始位置&…

【我的2023秋招记录】溯流

我的2023秋招记录 开篇&#xff08;2023-08-11&#xff09; 2023已经过去大半年了&#xff0c;久违地打开CSDN&#xff0c;发现上一篇博客还停留在2022年的10月。那时候正值疫情严重&#xff0c;研究所回不去&#xff0c;整天呆在家里面摆烂摸鱼&#xff0c;也时常忧虑之后的…

pikachu中RCE出现乱码的解决的方案

exec “ping” 输入127.0.0.1 这种乱码的解决办法就是在pikachu/vul/rce/rce_ping.php目录里面的第18行代码 header("Content-type:text/html; charsetgbk");的注释打开即可。 BUT但是吧&#xff01;又出现了其他的乱码&#xff01;但是搞完这个再把它给注释掉就行了…

mac ssh连接另一台window虚拟机vm

vmware配置端口映射 编辑(E) > 虚拟网络编辑器(N)... > NAT设置(S)... window防火墙&#xff0c;入站规则添加5555端口 控制面板 > 系统和安全 > Windows 防火墙>高级设置>入站规则>新建规则... tips windows查看端口命令&#xff1a;netstat -ano | f…

vscode的ros拓展(插件)无法渲染urdf

文章目录 事件背景资料调查解决方案 事件背景 之前在vscode中一直用得好好的urdf预览功能&#xff0c;突然在某一天&#xff0c;不行了。 执行 URDF Preview之后&#xff0c;虽然弹出了一个URDF Preview的窗口&#xff0c;但是这个窗口里面啥都没有。没有网格、没有模型。 一开…

【前端】WeUI DatePicker时间组件绑定方法以及chatGPT回答

2023年&#xff0c;第33周&#xff0c;第1篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; WeUI DatePicker&#xff0c;这个组件在纯html静态文件js里用的比较少&#xff0c;也忘记默认绑定值怎么设置&#xff0c;就用chatGPT来找答…

Spring整合MyBatis(详细步骤)

Spring与Mybatis的整合&#xff0c;大体需要做两件事&#xff0c; 第一件事是:Spring要管理MyBatis中的SqlSessionFactory 第二件事是:Spring要管理Mapper接口的扫描 具体的步骤为: 步骤1:项目中导入整合需要的jar包 <dependency><!--Spring操作数据库需要该jar包…

LeetCode150道面试经典题--最后一个单词的长度(简单)

1.题目 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 2.示例 3.思路 通过对字符串的反转&#xff0c;转为数组开始遍历&#xff0c…

Python小白入门:文件、异常处理和json格式存储数据

这里写自定义目录标题 所用资料 一、从文件中读取数据1.1 读取整个文件1.2 文件路径1.3 逐行读取1.4 创建一个包含文件各行内容的列表1.5 使用文件的内容1.6 包含一百万位的大型文件1.7 圆周率值中包含你的生日吗练习题 二、写入文件2.1 写入空文件2.2 写入多行2.3 附加到文件练…

腾讯云轻量应用服务器地域有什么区别?怎么选?

腾讯云轻量应用服务器地域是指轻量服务器数据中心所在的地理位置&#xff0c;如上海、广州和北京等地域&#xff0c;如何选择地域&#xff1f;地域的选择建议就近原则&#xff0c;用户距离轻量服务器地域越近&#xff0c;网络延迟越低&#xff0c;速度就越快&#xff0c;根据用…

教程分享:如何制作一个旅游路线二维码?

吃一成不变的早餐&#xff0c;九点出门还会遇见楼下遛狗的大爷&#xff0c;老板掐着表发起了会议邀请&#xff0c;窗外还是那几棵树&#xff0c;天空依旧灰蒙蒙的&#xff0c;羊了个羊第二关还是过不去&#xff0c;理发店的小哥又倚在门口抽烟…… 大多时候&#xff0c;我们的…

SpringBoot笔记:SpringBoot 集成 Dataway 多数据源配置(二)

文章目录 前言核心代码和配置yml 配置注入多数据源常用Spi实现swagger 配置自定义 Udf指定数据源进行查询 前言 之前简单介绍了一下 Dataway 使用&#xff0c;本文继续介绍一下它的多数据源配置和使用。 核心代码和配置 yml 配置 # springboot多环境配置 #端口&#xff0c;…

3D Web轻量化引擎HOOPS Communicator如何实现对BIM桌面端的支持?

HOOPS Communicator是一款简单而强大的工业级高性能3D Web轻量化渲染开发包&#xff0c;其主要应用于Web领域&#xff0c;主要加载其专有的SCS、SC、SCZ格式文件&#xff1b;HOOPS还拥有另一个桌面端开发包HOOPS Visualize&#xff0c;主要加载HSF、HMF轻量化格式文件。两者虽然…

git一次错误merge的回滚

场景&#xff1a;提交到sit的代码&#xff0c;结果解决冲突merge了DEV的代码&#xff0c;所以要回滚到合并之前的代码 &#xff08;原因是我再网页上处理了冲突&#xff0c;他就自动merge了,如图—所以还是idea处理冲突&#xff0c;可控&#xff09; 方式二&#xff1a; &…

详解C语言函数:深入了解函数的使用和特性

目录 引言 一、函数的概念 1.1 函数关键特点 1.2 函数的组成部分 1.3 函数声明和定义格式 二、函数分类 2.1 库函数 使用库函数的步骤 2.2 自定义函数 创建自定义函数的步骤 三、函数的参数类型 3.1 形式参数&#xff08;形参&#xff09;&#xff1a; 格式&#x…