【TensorFlow】P0 Windows GPU 安装 TensorFlow、CUDA Toolkit、cuDNN

Windows 安装 TensorFlow、CUDA Toolkit、cuDNN

  • 整体流程概述
    • TensorFlow 与 CUDA Toolkit
      • TensorFlow 是一个基于数据流图的深度学习框架
      • CUDA 充分利用 NIVIDIA GPU 的计算能力
      • CUDA Toolkit
    • cuDNN
  • 安装详细流程
    • 整理流程一:安装 CUDA Toolkit
      • 步骤一:获取CUDA版本信息
      • 步骤二:下载安装 CUDA Toolkit
      • 步骤三:按照默认步骤安装
      • 步骤四:检查CUDA安装成功
    • 整体流程二:安装cuDNN
      • 步骤一:下载 cuDNN
      • 步骤二:解压缩下载的 zip,并将其中的文件复制到 CUDA Toolkit 的相应目录
      • 步骤三:配置环境变量
    • 整体流程三:安装 TensorFlow-gpu
      • 步骤一:Anaconda中创建新的环境
      • 步骤二:查看下载 tensorflow-gpu 的版本号
      • 步骤三:检查整体流程安装成功
      • 步骤四:检查 cuDNN 安装成功可用


整体流程概述

TensorFlow 与 CUDA Toolkit

TensorFlow 是一个基于数据流图的深度学习框架

  • TensorFlow是一个基于数据流图的深度学习框架,它使用张量(Tensor)作为数据的基本单位,在GPU上进行张量运算可以极大地提高深度学习模型的训练和推理速度。而CUDA则提供了在GPU上执行高性能并行计算所需的API和运行时环境,能够实现深度学习任务的加速。

CUDA 充分利用 NIVIDIA GPU 的计算能力

  • 安装 TensorFlow 之前需要首先安装 CUDA,准确的说是 CUDA Toolkit。是因为 TensorFlow 使用 CUDA 作为其后端计算引擎。CUDA 是由 NVIDIA 提供的并行计算平台和编程模型,可以充分利用 NVIDIA GPU 的计算能力,实现高性能的并行计算。

CUDA Toolkit

  • 即 TensorFlow 默认会安装与系统和 GPU 兼容的版本,这需要依赖 CUDA Toolkit。CUDA Toolkit 包含 GPU 驱动程序、CUDA Runtime 库和相关工具,使 TensorFlow 能够与 NVIDIA GPU 进行交互并利用其计算能力。

cuDNN

  • 在安装 TensorFlow 之前需要安装 cuDNN(CUDA Deep Neural Network library),是因为 TensorFlow 使用 cuDNN 来加速深度神经网络的计算。cuDNN 是由 NVIDIA 开发的用于深度学习的 GPU 加速库,它针对深度神经网络的计算任务进行了高度优化,可以显著加快训练和推理过程。

  • TensorFlow 通过调用 cuDNN 的 API 来利用 GPU 上的硬件加速功能,特别是在卷积操作等深度学习任务中,cuDNN 能够提供很大的性能提升。在没有 cuDNN 的情况下,TensorFlow 会使用 CPU 来执行这些计算任务,但是由于 CPU 的计算速度相对较慢,处理大规模的深度学习模型时可能会非常耗时。


安装详细流程

在这里插入图片描述

整理流程一:安装 CUDA Toolkit

步骤一:获取CUDA版本信息

桌面 > 右键 > NVIDIA控制面板 > 查看系统信息 > 点击组件 > 查看 NVCUDA64.DLL 的 CUDA版本 > 成功获取CUDA版本信息;

在这里插入图片描述


步骤二:下载安装 CUDA Toolkit

访问 CUDA Toolkit Archive https://developer.nvidia.com/cuda-toolkit-archive 下载对应版本的 CUDA Toolkit,根据步骤一中的 CUDA 版本信息(例如我的CUDA版本为12.0.134),选择下载 Toolkit 版本:

在这里插入图片描述

并开始下载,耐心等待10分钟;

在这里插入图片描述


步骤三:按照默认步骤安装

按照向导进行安装即可;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
请添加图片描述


步骤四:检查CUDA安装成功

安装完成后,你可以在命令提示符或 PowerShell 中输入以下命令来验证 CUDA 是否成功安装:

nvcc -V

或者同:

nvcc --version

在这里插入图片描述

如果安装成功,将会输出 CUDA 的版本号。下面我们进行安装 cuDNN;


整体流程二:安装cuDNN

步骤一:下载 cuDNN

  • 访问 cuDNN 下载网址:https://developer.nvidia.com/rdp/cudnn-download;

  • 出现下图界面说明你需要首先登陆你的 NIVIDIA 账户;

在这里插入图片描述

  • 出现如下界面,需要根据本机的 CUDA 版本选择安装,如何获取本机的 CUDA 版本?如下:

获取CUDA版本信息:
桌面 > 右键 > NVIDIA控制面板 > 查看系统信息 > 点击组件 > 查看 NVCUDA64.DLL 的 CUDA版本 > 成功获取CUDA版本信息,即 12.x

在这里插入图片描述

  • 根据上述获得的 CUDA 版本信息,选择下载 12.x 版本的cuDNN;

在这里插入图片描述

步骤二:解压缩下载的 zip,并将其中的文件复制到 CUDA Toolkit 的相应目录

  • 解压缩后应该包含三个文件夹和一个文件:
    binincludelibLICENSE

在这里插入图片描述

  • 将三个文件夹中的文件分别复制到各自的 CUDA Toolkit 目录中
    • 首先打开 bin 文件夹:
      在这里插入图片描述
      复制全部文件,粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin 文件夹中;

    • 然后打开 include 文件夹:
      在这里插入图片描述
      同样复制全部文件,粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\include 文件夹中;

    • 最后打开 lib\x64 文件夹:
      在这里插入图片描述
      将全部文件粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\lib\x64 文件夹中;

步骤三:配置环境变量

  • 确保将 CUDA 和 cuDNN 的安装路径添加到系统的环境变量中,这样 TensorFlow 才能正确地找到这些库和头文件;
  • cuDNN 中不会默认配置环境变量,需要读者手动配置环境变量:
  • 首先打开 环境变量 path 栏目:

在这里插入图片描述

  • 将解压缩后的 cuDNN 文件夹的 \bin 绝对地址复制粘贴:
    C:\Users\xhong\Downloads\cudnn-windows-x86_64-8.9.3.28_cuda12-archive\cudnn-windows-x86_64-8.9.3.28_cuda12-archive\bin

在这里插入图片描述

完成!

cuDNN的完成检查需要等待下一步 tensorflow-gpu 安装完成后;


整体流程三:安装 TensorFlow-gpu

  • 在安装完 cuDNN 后,再安装 TensorFlow 时,TensorFlow 将能够识别到你的 cuDNN 并自动与之集成,从而在 GPU 上运行深度学习任务时获得显著的加速效果。总之,安装cuDNN是为了充分发挥GPU的计算能力,提高TensorFlow的性能和效率,特别是在处理复杂的深度学习模型时,cuDNN的优化可以为你节省大量时间。

步骤一:Anaconda中创建新的环境

  • 建议在 Anaconda Prompt 中创建一个新的环境,因为我的 base 环境已经安装好了 gpu 版本的 torch,而且如果都放在一个环境中更新环境会比较耗时;

  • 创建环境 tensorflow

    conda create -n tensorflow pip python=3.8
    
  • 激活环境 tensorflow

    activate tensorflow
    

    在这里插入图片描述

步骤二:查看下载 tensorflow-gpu 的版本号

https://www.tensorflow.org/install/source_windows?hl=zh-cn
网址最下方有一个表格,列有 GPU 的 CUDA、cuDNN 对照的安装的 tensorflow-gpu 版本号

在这里插入图片描述

  • 很明显,根据我的 cuDNN(8.9.3.28) 与 CUDA(12.0.134) 版本的短板效应,我稳妥选择 tensorflow_gpu-2.4.0 版本,建议读者到这里也这么选择,稳定能用就是了;

  • 输入命令:

    pip install --ignore-installed --upgrade tensorflow_gpu==2.4.0
    # 注意将2.4.0替换为你的版本号
    

等待安装完成!

步骤三:检查整体流程安装成功

  • 打开 Pycharm,记得将环境从 base 切换到刚刚创建配置的 tensorflow:

    import tensorflow as tf# 检查是否有可用的 GPU 设备
    if tf.config.list_physical_devices('GPU'):print('GPU可用')
    else:print("GPU不可用")
    

    在这里插入图片描述

  • 出现上图所示 True,即完成安装步骤,若出现 curand64_10.dll is not found 等标识,即说明下载安装相关 CUDA Toolkit 版本出现意外错误,解决办法为通过将文件中已含有的 curand64_11.dll 文件重命名可解决问题,如下图所示:

    在这里插入图片描述

  • bin文件目录地址为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin

  • 安装 CUDA 后,再安装 TensorFlow 时,TensorFlow 将会自动与 CUDA 进行集成,并在 GPU 上利用 CUDA 的功能来加速深度学习任务。这样,TensorFlow 能够更高效地执行张量计算,从而显著提高模型训练和推理的速度。

步骤四:检查 cuDNN 安装成功可用

import tensorflow as tf# 检查TensorFlow-gpu是否可用
print("TensorFlow-gpu available:", tf.test.is_gpu_available())# 检查cuDNN是否可用
print("cuDNN version:", tf.config.list_physical_devices('GPU'))

在这里插入图片描述
完结撒花!!!!~~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/85187.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot对接Oracle数据库

Spring Boot对接Oracle数据库 最近学习了Oracle数据库&#xff0c;那么如何使用Spring Boot和MyBatis Plus对接Oracle数据库呢&#xff1f; 这就有了这篇随记&#xff0c;具体流程如下 1、创建Maven工程 创建一个空的Maven工程&#xff0c;导入如下依赖&#xff1a; <?…

Python数据分析实战-列表字符串、字符串列表、字符串的转化(附源码和实现效果)

实现功能 str([None,master,hh]) ---> [None,"master","hh"] ---> "None,master,hh" 实现代码 import re import astx1 str([None,master,hh]) print(x1)x2 ast.literal_eval(x1) print(x2)x3 ",".join(str(item) for item…

微服务与Nacos概述-3

流量治理 在微服务架构中将业务拆分成一个个的服务&#xff0c;服务与服务之间可以相互调用&#xff0c;但是由于网络原因或者自身的原因&#xff0c;服务并不能保证服务的100%可用&#xff0c;如果单个服务出现问题&#xff0c;调用这个服务就会出现网络延迟&#xff0c;此时…

Gopeed-全平台开源高速下载器 支持(HTTP、BitTorrent、Magnet)协议

一、软件介绍 Gopeed&#xff08;全称 Go Speed&#xff09;&#xff0c;是一款由GolangFlutter开发的高速下载器&#xff0c;开源、轻量、原生&#xff0c;支持&#xff08;HTTP、BitTorrent、Magnet 等&#xff09;协议下载&#xff0c;并且支持全平台使用&#xff0c;底层使…

Java【算法 04】HTTP的认证方式之DIGEST认证详细流程说明及举例

HTTP的认证方式之DIGEST 1.是什么2.认值流程2.1 客户端发送请求2.2 服务器返回质询信息2.2.1 质询参数2.2.2 质询举例 2.3 客户端生成响应2.4 服务器验证响应2.5 服务器返回响应 3.算法3.1 SHA-2563.1.1 Response3.1.2 A13.1.3 A2 3.2 MD53.2.1 Request-Digest3.2.2 A13.2.3 A2…

Exams/ece241 2013 q4

蓄水池问题 S3 S2 S1 例如&#xff1a;000 代表 无水 &#xff0c;需要使FR3, FR2, FR1 都打开&#xff08;111&#xff09; S3 S2 S1 FR3 FR2 FR1 000 111 001 011 011 001 111 000 fr代表水变深为…

23款奔驰C260升级原厂香氛负离子系统,清香宜人,久闻不腻

奔驰原厂香氛合理性可通过车内空气调节组件营造芳香四溢的怡人氛围。通过更换手套箱内香氛喷雾发生器所用的香水瓶&#xff0c;可轻松选择其他香氛。香氛的浓度和持续时间可调。淡雅的香氛缓缓喷出&#xff0c;并且在关闭后能够立刻散去。车内气味不会永久改变&#xff0c;香氛…

@Autowired和@Resource注解超详细总结(附代码)

区别 1、来源不同 Autowired 和 Resource 注解来自不同的“父类”&#xff0c;其中Autowired注解是 Spring 定义的注解&#xff0c;而Resource 注解是 Java 定义的注解&#xff0c;它来自于 JSR-250&#xff08;Java 250 规范提案&#xff09;。 2、支持的参数不同 Autowir…

RestTemplate 请求转发异常 ERR_CONTENT_DECODING_FAILED 200 (OK)

#1 问题描述 在基于Spring Boot的项目中实现了请求转发&#xff08;使用 RestTemplate 的 exchange 方法&#xff09;的功能&#xff0c;忽然在前端报net::ERR_CONTENT_DECODING_FAILED 200 (OK)的错误&#xff0c;后端及上游系统日志均显示请求已完成。 #2 原因探寻 上述错…

【ChatGPT 指令大全】怎么使用ChatGPT来辅助学习英语

在当今全球化的社会中&#xff0c;英语已成为一门世界性的语言&#xff0c;掌握良好的英语技能对个人和职业发展至关重要。而借助人工智能的力量&#xff0c;ChatGPT为学习者提供了一个有价值的工具&#xff0c;可以在学习过程中提供即时的帮助和反馈。在本文中&#xff0c;我们…

多用户一体化建设跨境电商小程序、app开发

跨境电商是指通过互联网技术&#xff0c;进行国际贸易的电子商务活动。随着跨境电商的快速发展&#xff0c;许多企业开始关注开发跨境电商小程序和app&#xff0c;以扩大其国际业务。下面是多用户一体化建设跨境电商小程序和app的开发步骤。 第一步&#xff1a;需求分析和规划…

mysql的高可用架构之mmm

目录 一、mmm的相关知识 1&#xff09;mmm架构的概念 2&#xff09;MMM 高可用架构的重要组件 3&#xff09;mmm故障切换流程 二、mmm高可用双主双从架构部署 实验设计 实验需求 实验组件部署 具体实验步骤 步骤一&#xff1a; 搭建 MySQL 多主多从模式 &#…

FPGA应用学习笔记----定点除法的实现

除以2可以这样移位 迭代除法&#xff0c;就是直接除 迭代除法&#xff0c;就是直接除 除数左移&#xff0c;被除数减去除数&#xff0c;余数大于0则商数置1然后左移&#xff0c;余数作为被减数左移&#xff0c;再减除数&#xff0c;再看余数是否大于0&#xff0c;若大于0&…

第十六章、【Linux】程序管理与SELinux初探

16.1 什么是程序 &#xff08;process&#xff09; 在Linux 系统当中&#xff1a;“触发任何一个事件时&#xff0c;系统都会将他定义成为一个程序&#xff0c;并且给予这个程序一个 ID &#xff0c;称为 PID&#xff0c;同时依据启发这个程序的使用者与相关属性关系&#xff…

【网络】传输层——UDP | TCP(协议格式确认应答超时重传连接管理)

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《网络》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 现在是传输层&#xff0c;在应用层中的报文(报头 有效载荷)就不能被叫做报文了&#xff0c;而是叫做数…

PDF Expert 3.3 for mac

PDF Expert是一款专业的PDF编辑和阅读工具。它可以帮助用户在Mac、iPad和iPhone等设备上查看、注释、编辑、填写和签署PDF文档。 以下是PDF Expert的特点&#xff1a; PDF编辑&#xff1a;PDF Expert提供了丰富的PDF编辑功能&#xff0c;包括添加、删除、移动、旋转、缩放、裁…

链表有无环以及确定入环口详解

142.环形链表 II 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测…

redis的事务和watch机制

这里写目录标题 第一章、redis事务和watch机制1.1&#xff09;redis事务&#xff0c;事务的三大命令语法&#xff1a;开启事务 multi语法&#xff1a;执行事务 exec语法&#xff1a;取消事务 discard 1.2&#xff09;redis事务的错误和回滚的情况1.3&#xff09;watch机制语法&…

Django框架-使用celery(一):django使用celery的通用配置,不受版本影响

目录 一、依赖包情况 二、项目目录结构 2.1、怎么将django的应用创建到apps包 三、celery的配置 2.1、celery_task/celery.py 2.2、celery_task/async_task.py 2.3、celery_task/scheduler_task.py 2.4、utils/check_task.py 四、apps/user中配置相关处理视图 4.1、基本…

Vue [Day7] 综合案例

核心概念回顾 state&#xff1a;提供数据 getters&#xff1a;提供与state相关的计算属性 mutations&#xff1a;提供方法&#xff0c;用于修改state actions&#xff1a;存放异步操作 modules&#xff1a;存模块 功能分析 https://www.npmjs.com/package/json-server#ge…