随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以 流量
为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
Sentinel是分布式系统的防御系统。
Sentinel 具有以下特征:
•丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
•完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
•广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
•完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
1、微服务整合Sentinel
在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:
1)引入sentinel依赖
<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
2)配置控制台
修改application.yaml文件,添加下面内容:
server:port: 8088
spring:cloud: sentinel:transport:dashboard: localhost:8080
3)访问order-service的任意端点
打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
2、流量控制
2.1 簇点链路
当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源。
默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
访问的order-service中的OrderController中的端点:/order/{orderId}
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
- 流控:流量控制
- 降级:降级熔断
- 热点:热点参数限流,是限流的一种
- 授权:请求的权限控制
2.2 流控模式
在添加限流规则时,点击高级选项,可以选择三种流控模式:
- 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
- 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
- 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
2.2.1 关联模式
关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
配置规则:
语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。
使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。
需求说明:
-
在OrderController新建两个端点:/order/query和/order/update,无需实现业务
-
配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
1)定义/order/query端点,模拟订单查询
@GetMapping("/query")
public String queryOrder() {return "查询订单成功";
}
2)定义/order/update端点,模拟订单更新
@GetMapping("/update")
public String updateOrder() {return "更新订单成功";
}
重启服务,查看sentinel控制台的簇点链路:
3)配置流控规则
对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:
在表单中填写流控规则:
4)在Jmeter测试
选择《流控模式-关联》:
可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5
查看http请求:
请求的目标是/order/update,这样这个断点就会触发阈值。
但限流的目标是/order/query,我们在浏览器访问,可以发现:
确实被限流了。
5)总结
2.2.2 链路模式
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
配置示例:
例如有两条请求链路:
-
/test1 --> /common
-
/test2 --> /common
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
实战案例
需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
步骤:
-
在OrderService中添加一个queryGoods方法,不用实现业务
-
在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
-
在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
-
给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
实现:
1)添加查询商品方法
在order-service服务中,给OrderService类添加一个queryGoods方法:
public void queryGoods(){System.err.println("查询商品");
}
2)查询订单时,查询商品
在order-service的OrderController中,修改/order/query端点的业务逻辑:
@GetMapping("/query")
public String queryOrder() {// 查询商品orderService.queryGoods();// 查询订单System.out.println("查询订单");return "查询订单成功";
}
3)新增订单,查询商品
在order-service的OrderController中,修改/order/save端点,模拟新增订单:
@GetMapping("/save")
public String saveOrder() {// 查询商品orderService.queryGoods();// 查询订单System.err.println("新增订单");return "新增订单成功";
}
4)给查询商品添加资源标记
默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。
给OrderService的queryGoods方法添加@SentinelResource注解:
@SentinelResource("goods")
public void queryGoods(){System.err.println("查询商品");
}
链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:
spring:cloud:sentinel:web-context-unify: false # 关闭context整合
重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:
5)添加流控规则
点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:
只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。
6)Jmeter测试
选择《流控模式-链路》:
可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2
一个http请求是访问/order/save:
运行的结果:
完全不受影响。
另一个是访问/order/query:
运行结果:
每次只有2个通过。
2.2.3 总结
流控模式有哪些?
•直接:对当前资源限流
•关联