智能客服系统:结合 AI 模型与数据库实现对话与知识检索

智能客服系统在现代企业中起着至关重要的作用。通过结合 生成式 AI 模型向量数据库,可以构建一个能够高效回答用户问题、支持知识检索并实现对话连续性的智能客服系统。

本文将详细讲解如何设计并实现一个基于 Spring AI 的智能客服系统。


1. 系统架构设计

智能客服系统需要同时具备以下功能:

  1. 自然语言处理(NLP)
    • 使用 AI 模型解析用户输入,并生成合理的回答。
  2. 知识检索
    • 通过向量数据库检索企业知识库中的相关内容。
  3. 会话管理
    • 记录用户对话上下文,实现连续对话。
  4. 数据库支持
    • 存储用户信息、问题历史以及检索内容。
架构图
+-------------------+         +----------------------+
| 用户输入 (对话)    |         | 企业知识库 (向量数据库)|
+-------------------+         +----------------------+|                            ^v                            |
+-------------------+         +----------------------+
| 对话管理模块       |<------->| 检索模块              |
+-------------------+         +----------------------+|                            ^v                            |
+-------------------+         +----------------------+
| 生成式 AI 模型     |<--------| 数据库管理模块         |
+-------------------+         +----------------------+|v
+-------------------+
| 用户输出 (回答)    |
+-------------------+

2. 核心模块实现

2.1 环境准备

创建一个基于 Spring Boot 的项目,集成以下依赖:

  1. Spring AI:用于调用生成式 AI 模型。
  2. 向量数据库(Chroma 或 Milvus):用于知识检索。
  3. 数据库支持:存储会话记录和用户信息。

添加 Maven 依赖:

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jpa</artifactId></dependency><dependency><groupId>com.chroma</groupId><artifactId>chroma-client</artifactId><version>0.1.0</version></dependency><dependency><groupId>com.openai</groupId><artifactId>openai-client</artifactId><version>1.0.0</version></dependency>
</dependencies>

2.2 数据库设计

设计用于存储用户信息、对话历史和知识库的数据库模型。

用户表

存储用户基本信息。

@Entity
public class User {@Id@GeneratedValue(strategy = GenerationType.IDENTITY)private Long id;private String username;private String email;
}
对话历史表

存储用户与系统的对话记录。

@Entity
public class ChatHistory {@Id@GeneratedValue(strategy = GenerationType.IDENTITY)private Long id;private Long userId;private String userMessage;private String botResponse;private LocalDateTime timestamp;
}

2.3 会话管理模块

用于记录和管理用户的对话上下文。

@Service
public class ConversationService {private final Map<Long, List<String>> conversationMap = new HashMap<>();// 添加对话内容public void addMessage(Long userId, String message) {conversationMap.computeIfAbsent(userId, k -> new ArrayList<>()).add(message);}// 获取对话历史public List<String> getConversation(Long userId) {return conversationMap.getOrDefault(userId, new ArrayList<>());}// 清空会话public void clearConversation(Long userId) {conversationMap.remove(userId);}
}

2.4 检索模块

使用向量数据库检索相关知识库内容。

@Service
public class KnowledgeRetrievalService {private final ChromaClient chromaClient;public KnowledgeRetrievalService(ChromaClient chromaClient) {this.chromaClient = chromaClient;}public List<String> retrieveKnowledge(String query) {// 将用户输入转换为嵌入并进行检索List<Float> queryEmbedding = chromaClient.generateEmbedding(query);return chromaClient.query(queryEmbedding, 5); // 返回相关的 5 条知识}
}

2.5 生成式 AI 模型集成

通过 Spring AI 调用生成式 AI 模型生成回答。

@Service
public class ChatBotService {private final KnowledgeRetrievalService retrievalService;private final OpenAIClient openAIClient;public ChatBotService(KnowledgeRetrievalService retrievalService, OpenAIClient openAIClient) {this.retrievalService = retrievalService;this.openAIClient = openAIClient;}public String generateResponse(String userMessage, Long userId) {// 步骤 1: 检索相关知识List<String> knowledge = retrievalService.retrieveKnowledge(userMessage);// 步骤 2: 构造生成上下文String context = String.join("\n", knowledge);String prompt = "以下是相关知识:\n" + context + "\n用户问题:" + userMessage;// 步骤 3: 调用生成式模型生成回答return openAIClient.getAnswer(prompt);}
}

2.6 API 接口

提供 RESTful 接口,供前端或其他系统调用。

@RestController
@RequestMapping("/chat")
public class ChatController {private final ChatBotService chatBotService;private final ConversationService conversationService;public ChatController(ChatBotService chatBotService, ConversationService conversationService) {this.chatBotService = chatBotService;this.conversationService = conversationService;}@PostMapping("/message")public ResponseEntity<String> handleMessage(@RequestParam Long userId, @RequestBody String userMessage) {// 记录用户输入conversationService.addMessage(userId, userMessage);// 生成回答String response = chatBotService.generateResponse(userMessage, userId);// 记录回答conversationService.addMessage(userId, response);return ResponseEntity.ok(response);}
}

3. 应用场景

3.1 客户支持
  • 场景:客户提问 “我的订单状态是什么?”
  • 系统响应:通过知识库查询订单相关内容,并返回 “您的订单已发货,预计明天送达。”
3.2 企业内部知识库问答
  • 场景:员工提问 “公司的假期政策是什么?”
  • 系统响应:从知识库中检索相关文档,并生成详细回答。
3.3 法律问答系统
  • 场景:律师提问 “合同中的保密条款是什么?”
  • 系统响应:检索合同文档中的保密条款并生成总结。

4. 优化与扩展

4.1 添加多模态支持

支持图像、语音等输入,进一步提升智能客服的应用范围。

4.2 提升性能

通过缓存机制减少重复检索,提升系统响应速度。

4.3 安全与合规

添加敏感内容过滤和隐私保护,确保系统输出符合企业和法律要求。


5. 总结

通过结合 Spring AI、向量数据库和生成式 AI 模型,可以构建一个强大的智能客服系统,实现高效的知识检索和自然语言对话。这样的系统在企业知识管理、客户支持和法律辅助等领域有着广泛的应用前景,为用户提供更加智能、精准和高效的服务体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8999.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jemalloc 5.3.0的tsd模块的源码分析

一、背景 在主流的内存库里&#xff0c;jemalloc作为android 5.0-android 10.0的默认分配器肯定占用了非常重要的一席之地。jemalloc的低版本和高版本之间的差异特别大&#xff0c;低版本的诸多网上整理的总结&#xff0c;无论是在概念上和还是在结构体命名上在新版本中很多都…

【Elasticsearch】Elasticsearch的查询

Elasticsearch的查询 DSL查询基础语句叶子查询全文检索查询matchmulti_match 精确查询termrange 复合查询算分函数查询bool查询 排序分页基础分页深度分页 高亮高亮原理实现高亮 RestClient查询基础查询叶子查询复合查询排序和分页高亮 数据聚合DSL实现聚合Bucket聚合带条件聚合…

DeepSeek R1有什么不同

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

macbook安装go语言

通过brew来安装go语言 使用brew命令时&#xff0c;一般都会通过brew search看看有哪些版本 brew search go执行后&#xff0c;返回了一堆内容&#xff0c;最下方展示 If you meant "go" specifically: It was migrated from homebrew/cask to homebrew/core. Cas…

文本左右对齐

hello 大家好&#xff01;今天开写一个新章节&#xff0c;每一天一道算法题。让我们一起来学习算法思维吧&#xff01; function fullJustify(words, maxWidth) {// 用于存储最终排版好的每一行文本const result [];// 用于遍历单词数组的索引&#xff0c;初始化为 0let i 0;…

Oracle 创建用户和表空间

Oracle 创建用户和表空间 使用sys 账户登录 建立临时表空间 --建立临时表空间 CREATE TEMPORARY TABLESPACE TEMP_POS --创建名为TEMP_POS的临时表空间 TEMPFILE /oracle/oradata/POS/TEMP_POS.DBF -- 临时文件 SIZE 50M -- 其初始大小为50M AUTOEXTEND ON -- 支持…

树状数组讲解

文章目录 1395.统计作战单位数 树状数组b站博主 灵神博主 tree数组&#xff1a;Tree[i] 存储的是原本的数组中num[i - (i&-i)1]到nums[i]的和 更新的时候&#xff0c;num[i[更新&#xff0c;逐一修改num[i(i & -i)] 307.区间和检索-数组可修改 题目实战 总的代码&#…

PostGIS笔记:PostgreSQL中表、键和索引的基础操作

创建、查看与删除表 在数据库中创建一个表&#xff0c;使用如下代码&#xff1a; create table streets (id serial not null primary key, name varchar(50));这里的表名是streets&#xff0c;id是主键所以非空&#xff0c;采用serial数据类型&#xff0c;这个数据类型会自动…

【JavaEE进阶】图书管理系统 - 壹

目录 &#x1f332;序言 &#x1f334;前端代码的引入 &#x1f38b;约定前后端交互接口 &#x1f6a9;接口定义 &#x1f343;后端服务器代码实现 &#x1f6a9;登录接口 &#x1f6a9;图书列表接口 &#x1f384;前端代码实现 &#x1f6a9;登录页面 &#x1f6a9;…

大数据学习之SCALA分布式语言三

7.集合类 111.可变set一 112.可变set二 113.不可变MAP集合一 114.不可变MAP集合二 115.不可变MAP集合三 116.可变map一 package com . itbaizhan . chapter07 //TODO 2. 使用 mutable.Map 前导入如下包 import scala . collection . mutable // 可变 Map 集合 object Ma…

C++:多继承习题3

题目内容&#xff1a; 声明一个时间类Time&#xff0c;时间类中有3个私有数据成员(Hour&#xff0c;Minute&#xff0c;Second)和两个公有成员函数(SetTime和PrintTime)。要求&#xff1a; &#xff08;1&#xff09; SetTime根据传递的3个参数为对象设置时间&#xff1b; &a…

14-6-2C++STL的list

(一&#xff09;list对象的带参数构造 1.list&#xff08;elem);//构造函数将n个elem拷贝给本身 #include <iostream> #include <list> using namespace std; int main() { list<int> lst(3,7); list<int>::iterator it; for(itlst.begi…

Elasticsearch——Elasticsearch性能优化实战

摘要 本文主要介绍了 Elasticsearch 性能优化的实战方法&#xff0c;从硬件配置优化、索引优化设置、查询方面优化、数据结构优化以及集群架构设计等五个方面进行了详细阐述&#xff0c;旨在帮助读者提升 Elasticsearch 的性能表现。 1. 硬件配置优化 升级硬件设备配置一直都…

Linux进程调度与等待:背后的机制与实现

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言&#xff1a; 当一个进程发起某种操作&#xff08;如I/O请求、信号、锁的获取等&#xff09;&#xff0c;但该操作需要的资源暂时不可用时&#xff0c;进程会被操作系统挂起&#xff0c;进入“等待队列”或“阻塞状态”。…

【教学类-89-02】20250128新年篇02——姓名藏头对联(星火讯飞+Python,五言对联,有横批)

背景需求&#xff1a; 过年了&#xff0c;我想用幼儿的名字写对联&#xff0c;但是我根本不会写&#xff0c;于是尝试让AI来写。 1.我班的孩子的名字都是2字和3字的 2.惊喜发现&#xff0c;AI它很快就能生成带名字的对联 但是观察发现&#xff0c;如果是二个名字的对联&#…

Node.js基础

浏览器知识 浏览器 个浏览器都内置了DOM、BOM等API函数&#xff0c;供浏览器中的Javascript调用。 每个浏览器都有对应的JavaScript解析引擎。 浏览器中的JavaScript环境 V8引擎负责解析和执行JavaScript代码 内置API是由运行环境提供的特殊接口&#xff0c;只能在所属的运…

【漫话机器学习系列】066.贪心算法(Greedy Algorithms)

贪心算法&#xff08;Greedy Algorithms&#xff09; 贪心算法是一种逐步构建解决方案的算法&#xff0c;每一步都选择当前状态下最优的局部选项&#xff08;即“贪心选择”&#xff09;&#xff0c;以期望最终获得全局最优解。贪心算法常用于解决最优化问题。 核心思想 贪心选…

WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用

WPF基础 | WPF 常用控件实战&#xff1a;Button、TextBox 等的基础应用 一、前言二、Button 控件基础2.1 Button 的基本定义与显示2.2 按钮样式设置2.3 按钮大小与布局 三、Button 的交互功能3.1 点击事件处理3.2 鼠标悬停与离开效果3.3 按钮禁用与启用 四、TextBox 控件基础4.…

GD32的GD库开发

所有的Cortex-M处理器都有相同的SysTick定时器&#xff0c;因为CMSIS-Core头文件中定义了一个名为SysTick的结构体。 这个定时器可以用作延时函数&#xff0c;不管是STM32的芯片还是GD32&#xff0c;AT32的芯片&#xff0c;delay函数都可以这么写&#xff0c;只要它是cortex-M…

跨域问题及解决方案

跨域问题不仅影响开发效率&#xff0c;还可能导致项目进度延误。因此&#xff0c;理解和掌握跨域问题的原理及其解决方案对于前端开发者和后端开发者来说都至关重要。本文将详细介绍什么是跨域、跨域产生的原因&#xff0c;以及常见的后端跨域解决方案。 文章目录 一、什么是跨…