2023国赛数学建模E题思路分析

文章目录

  • 0 赛题思路
  • 1 竞赛信息
  • 2 竞赛时间
  • 3 建模常见问题类型
    • 3.1 分类问题
    • 3.2 优化问题
    • 3.3 预测问题
    • 3.4 评价问题
  • 4 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 竞赛信息

全国大学生数学建模竞赛(以下简称竞赛)是中国工业与应用数学学会主办的面向全国大学生 的群众性科技活动,旨在激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解 决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作 意识,推动大学数学教学体系、教学内容和方法的改革。

竞赛题目一般来源于科学与工程技术、人文与社会科学(含经济管理)等领域经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学基础课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

竞赛分为本科组和专科组进行。本科学生只能参加本科组竞赛,不能参加专科组竞赛。专科(高职高专)学生一般参加专科组竞赛,也可参加本科组竞赛,无论参加何组竞赛,均必须在报名时确定,报名截止后不能再更改报名组别。同一参赛队的学生必须来自同一所学校。
在这里插入图片描述

2 竞赛时间

报名结束时间:2023年9月4日20:00

比赛开始时间:2023年9月7日(周四)18:00

比赛结束时间:2023年9月10日(周日)20:00

3 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下国赛数学建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

分类模型

优化模型

预测模型

评价模型

3.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于生产计划、物流运输、资源分配、金融投资等领域。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;

(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

3.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

3.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91056.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

纯js点击按钮切换首页部分页面

像我这种大数据的,不会前端的,懒得学框架,现在有gpt了,前端对于我来说,用原生的更加友好,毕竟算法gpt都能优化。 首页我有个页面,然后我现在想点击gm替换上面的统计,点击用户替换回…

Flask Web开发实战(狼书)| 笔记第1、2章

前言 2023-8-11 以前对网站开发萌生了想法,又有些急于求成,在B站照着视频敲了一个基于flask的博客系统。但对于程序的代码难免有些囫囵吞枣,存在许多模糊或不太理解的地方,只会照葫芦画瓢。 而当自己想开发一个什么网站的时&…

SpringCloud微服务之间如何进行用户信息传递(涉及:Gateway、OpenFeign组件)

目录 1、想达到的效果2、用户信息在微服务之间传递的两种途径3、用RuoYi-Cloud为例进行演示说明(1)网关将用户信息写在请求头中(2)业务微服务之间通过OpenFeign进行调用,并且将用户信息写在OpenFeign准备的请求头中&am…

Qt+C++自定义控件仪表盘动画仿真

程序示例精选 QtC自定义控件仪表盘动画仿真 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC自定义控件仪表盘动画仿真>>编写代码&#xff0c;代码整洁&#xff0c;规则&…

浅谈SMT行业MES系统生产管理的特点

一、SMT生产车间在电子制造中起重要作用的部分&#xff0c;主要具备以下生产特点&#xff1a; 1.高密度和高速度&#xff1a; SMT生产车间中的电子元器件一般来说较为精小&#xff0c;且被紧密地排列在PCB上。这就要求SMT生产车间的机械设备具备高精度和高速度&#xff0c;确保…

怎么对视频进行压缩?

怎么对视频进行压缩&#xff1f;视频压缩&#xff0c;我们都知道是将视频文件进行压缩变小的过程&#xff0c;是我们日常办公中较为常用的手段。现如今&#xff0c;在视频技术不断发展与创新的基础上&#xff0c;视频分辨率也在不断提高&#xff0c;进而导致文件占有量也非常大…

前后端分离------后端创建笔记(05)用户列表查询接口(下)

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

设计HTML5图像和多媒体

在网页中的文本信息直观、明了&#xff0c;而多媒体信息更富内涵和视觉冲击力。恰当使用不同类型的多媒体可以展示个性&#xff0c;突出重点&#xff0c;吸引用户。在HTML5之前&#xff0c;需要借助插件为网页添加多媒体&#xff0c;如Adobe Flash Player、苹果的QuickTime等。…

DoIP学习笔记系列:(六)满足AES128-CMAC算法的“安全认证”.dll生成实践

文章目录 1. 算法Demo2. 算法实现传送门 DoIP学习笔记系列:导航篇 AES128-CMAC算法在汽车电子控制单元的软件开发中涉及到安全相关的需求经经常用到,具体的算法原理请各位小伙伴自行百度,本篇主要向大家分享该算法如何集成到.dll文件中,在OTA、刷写等场景作为$27服务的安全…

python -m参数的作用(python3 -m)

文章目录 Python -m 参数的作用直接执行模块代码模块自测试环境隔离避免名称冲突 其他&#xff1a;python3 --help Python -m 参数的作用 在Python中&#xff0c;使用-m参数可以执行一个模块作为脚本。它是用于从命令行直接运行一个Python模块的标志。这种方式具有以下几个方面…

RocketMQ消息轨迹产生的背景以及使用方式

这里是weihubeats,觉得文章不错可以关注公众号小奏技术&#xff0c;文章首发。拒绝营销号&#xff0c;拒绝标题党 背景 最近在维护RocketMQ经常会出现这种问题 消息发送方和接收方出现扯皮&#xff0c;消息发送方说我的消息已经发送成功了&#xff0c;消费方说我没接收到消息。…

uni——初次加载问题处理(赋值后再调用)

案例描述 此案例中 一进页面接收good_id并调用接口&#xff0c;这个流程正常。 这个changeNum也是一进页面就触发了&#xff08;组件购物车加减自带&#xff09;&#xff0c;且触发的顺序在onload赋值id之前&#xff0c;这时候good_id还是为空&#xff0c;所以接口报错。如何处…

十一、避开客户端控件——收集用户数据

文章目录 一、HTML表单1.1 长度限制1.2 基于脚本的确认1.3 禁用的元素 二、浏览器拓展2.1 常见的浏览器拓展技术2.2 攻击浏览器扩展的方法 一、HTML表单 应用程序使用客户端控件限制客户端提交的数据的另一个主要控制对象&#xff0c;是由客户端计算机自己收集的数据。 HTML表单…

Python-OpenCV中的图像处理-图像直方图

Python-OpenCV中的图像处理-图像直方图 图像直方图统计直方图绘制直方图Matplotlib绘制灰度直方图Matplotlib绘制RGB直方图 使用掩膜统计直方图直方图均衡化Numpy图像直方图均衡化OpenCV中的直方图均衡化CLAHE 有限对比适应性直方图均衡化 2D直方图OpenCV中的2D直方图Numpy中2D…

Medical Isolated Power Supply System in Angola

安科瑞 华楠 Abstract: Diagnosis and treatment in modern hospitals are inseparable from advanced medical equipment, which are inseparable from safe and reliable power supply. Many operations often last for several hours, and the consequences of a sudden pow…

欢迎光临,博客网站

欢迎光临&#xff1a;YUNYE博客~https://yunyeblog.com/更多的文章&#xff0c;供大家参考学习&#xff01;&#xff01;&#xff01;

Mybatis 源码 ④ :TypeHandler

文章目录 一、前言二、DefaultParameterHandler1. DefaultParameterHandler#setParameters1.1 UnknownTypeHandler1.2 自定义 TypeHandler 三、DefaultResultSetHandler1. hasNestedResultMaps2. handleRowValuesForNestedResultMap2.1 resolveDiscriminatedResultMap2.2 creat…

VSCode使用SSH无密码连接Ubuntu

VSCode使用SSH无密码连接Ubuntu 前提条件&#xff1a; 1. 能够正常使用vscode的Remote-ssh连接Ubuntu 2. Ubuntu配置静态ip&#xff08;否则经常需要修改Remote-ssh的配置文件里的IP&#xff09; 链接-> ubuntun 18.04设为静态ip&#xff08;.net模式&#xff0c;可连接…

初学HTML:在线简易画板设计。

最近在HTML&#xff0c;记录下一点点成果。 设计了一个简易画板&#xff0c;通过HTML的Canvas元素实现一个在线画板&#xff0c;用户可以在上面绘制图形或涂鸦。 下面是运行效果&#xff1a; 下面是代码&#xff1a; <!DOCTYPE html> <html> <head><ti…

蓝绿灰度发布的介绍

背景介绍 蓝绿灰度发布 介绍 蓝绿部署中&#xff0c;一共有两套系统&#xff1a;一套是正在提供服务系统(也就是上面说的旧版)&#xff0c;标记为绿色&#xff1b;另一套是准备发布的系统&#xff0c;标记为蓝色。两套系统都是功能完善的&#xff0c;并且正在运行的系统&…