回归预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多输入多输出预测
目录
- 回归预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多输入多输出预测
- 预测效果
- 基本介绍
- 程序设计
- 往期精彩
- 参考资料
预测效果
基本介绍
MATLAB实现BiLSTM双向长短期记忆神经网络多输入多输出预测,数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2018b及以上。命令窗口输出MAE和R2,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据下载方式(资源处直接下载):MATLAB实现BiLSTM双向长短期记忆神经网络多输入多输出预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
layers = [ ...sequenceInputLayer(numFeatures)fullyConnectedLayer(numResponses)regressionLayer];
options = trainingOptions('adam', ...'MaxEpochs',250, ...'GradientThreshold',1, ...'InitialLearnRate',0.005, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',125, ...'LearnRateDropFactor',0.2, ...'ExecutionEnvironment','cpu', ...'Verbose',0, ...'Plots','training-progress');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
往期精彩
MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
MATLAB实现GRNN广义回归神经网络多输入多输出预测
MATLAB实现GRU门控循环单元多输入多输出
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261