神经网络基础-神经网络补充概念-08-逻辑回归中的梯度下降算法

概念

逻辑回归是一种用于分类问题的机器学习算法,而梯度下降是优化算法,用于更新模型参数以最小化损失函数。在逻辑回归中,我们使用梯度下降算法来找到最优的模型参数,使得逻辑回归模型能够更好地拟合训练数据。

逻辑回归中的梯度下降算法的步骤:

在这里插入图片描述

伪代码

初始化参数向量 theta
重复迭代直到收敛或达到最大迭代次数:计算模型预测值 h_theta(x)计算损失函数 J(theta)计算梯度 ∂J(theta)/∂theta更新参数 theta: theta := theta - learning_rate * gradient

代码实现

import numpy as npdef sigmoid(z):return 1 / (1 + np.exp(-z))def compute_loss(X, y, theta):m = len(y)h = sigmoid(X.dot(theta))loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))return lossdef gradient_descent(X, y, theta, learning_rate, num_iterations):m = len(y)losses = []for _ in range(num_iterations):h = sigmoid(X.dot(theta))gradient = X.T.dot(h - y) / mtheta -= learning_rate * gradientloss = compute_loss(X, y, theta)losses.append(loss)return theta, losses# 生成一些模拟数据
np.random.seed(42)
X = np.random.randn(100, 2)
X = np.hstack((np.ones((X.shape[0], 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(100) * 0.2) > 0# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000# 执行梯度下降
theta_optimized, losses = gradient_descent(X, y, theta, learning_rate, num_iterations)# 打印优化后的参数
print("优化后的参数:", theta_optimized)# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94297.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python selenium如何保存网站的cookie用于下次自动登录

## 一、python selenium如何保存网站的cookie 使用Selenium保存网站的Cookie非常简单。下面是一个示例,展示了如何使用Selenium打开网站,然后保存获取到的Cookie: from selenium import webdriver# 初始化浏览器 browser webdriver.Chrome…

正则表达式 —— Awk

Awk awk:文本三剑客之一,是功能最强大的文本工具 awk也是按行来进行操作,对行操作完之后,可以根据指定命令来对行取列 awk的分隔符,默认分隔符是空格或tab键,多个空格会压缩成一个 awk的用法 awk的格式…

【经典排序】—— “希尔排序”

插入排序希尔排序插入排序VS希尔排序 测试 希尔排序是在插入排序的基础上进行改进优化,所以学习希尔排序之前需要先了解插入排序。 插入排序 像玩扑克牌摸牌时一样,一张一张摸,每摸到一张插入到对应的位置,插入排序就是从第一个位…

大模型技术实践(一)|ChatGLM2-6B基于UCloud UK8S的创新应用

近半年来,通过对多款主流大语言模型进行了调研,我们针对其训练方法和模型特点进行逐一分析,方便大家更加深入了解和使用大模型。本文将重点分享ChatGLM2-6B基于UCloud云平台的UK8S实践应用。 01各模型结构及特点 自从2017年6月谷歌推出Transf…

NFTScan NFT API 在 DID Protocol 开发中的应用

自互联网发展以来,Web2.0 时代产生了网络社会,社会已经不再局限于地理边界,而 Web 3.0 引入了去中心化的理念,强调个体数据隐私和可信互操作性。在这个新的时代中,去中心化身份(Decentralized Identifier 即…

vue3+vite配置vantUI主题

❓在项目中统一配置UI主题色,各个组件配色统一修改 vantUI按需安装 参考vantUI文档 创建vantVar.less文件夹进行样式编写 vantVar.less :root:root{//导航--van-nav-bar-height: 44px;//按钮--van-button-primary-color: #ffffff;--van-button-primary-backgr…

【Rust】Rust学习 第十一章编写自动化测试

Rust 是一个相当注重正确性的编程语言,不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫,不过它不可能捕获所有种类的错误。为此,Rust 也在语言本身包含了编写软件测试的支持。 编写一个叫做 add_two 的将传递…

FFmpeg 硬编码VideoToolBox流程

介绍 FFmpeg已经提供对 VideoToolBox 的编解码支持;主要涉及到的文件有videotoolbox.c、videotoolbox.h、videotoolboxenc.c、ffmepg_videotoolbox.c。在编译 FFmpeg 源码时,想要支持VideoToolBox,在 configure 时,需要–enable-…

激活函数总结(十一):激活函数补充(Absolute、Bipolar、Bipolar Sigmoid)

激活函数总结(十一):激活函数补充 1 引言2 激活函数2.1 Absolute激活函数2.2 Bipolar激活函数2.3 Bipolar Sigmoid激活函数 3. 总结 1 引言 在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、…

第十三章 SpringBoot项目(总)

1.创建SpringBoot项目 1.1.设置编码 1.4.导入已有的spring boot项目 2.快速搭建Restfull风格的项目 2.1.返回字符串 RestController public class IndexController {RequestMapping("/demo1")public Object demo1() {System.out.println("demo1 ran...."…

2022年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数组逆序重放 将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。 输入 输入为两行:第一行数组中元素的个数n(1 输出 输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。 样例输入 5 8 6 5 4 1 样例输出 1 4 5 6 8 以下是…

网络安全--linux下Nginx安装以及docker验证标签漏洞

目录 一、Nginx安装 二、docker验证标签漏洞 一、Nginx安装 1.首先创建Nginx的目录并进入: mkdir /soft && mkdir /soft/nginx/cd /soft/nginx/ 2.下载Nginx的安装包,可以通过FTP工具上传离线环境包,也可通过wget命令在线获取安装包…

Linux:shell脚本:基础使用(5)《正则表达式-sed工具》

sed是一种流编辑器,它是文本处理中非常中的工具,能够完美的配合正则表达式使用,功能不同凡响。 处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用s…

深入篇【C++】手搓模拟实现二叉搜索树(递归/非递归版本)常见应用场景(K模型与KV模型)

深入篇【C】手搓模拟实现二叉搜索树(递归/非递归版本)&&常见应用场景 Ⅰ.二叉搜索树概念Ⅱ.二叉搜索树模拟实现(递归与非递归)①.定义结点②.构造二叉树③.插入结点④.删除结点(重要)⑤.查找结点⑥.析构二叉树⑦.拷贝二叉树⑧.二叉树赋值 Ⅲ.二叉搜索树应用…

SpringBoot复习:(48)RedisAutoConfiguration自动配置类

RedisAutoConfiguration类代码如下: 可以看到在这个类中配置了2个bean: redisTemplate和stringRedisTemplate. 而它通过EnableConfigurationProperties(RedisProperties.class)注解,把配置文件中配置的Redis相关的信息引入进来了,RedisPrope…

元素在div中水平居中

先看一下行级元素在div中水平居中&#xff1b; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>div demo </title> <style> body {background-color:#d0e4fe; }</style> </head><body>&…

使用css实现时间线布局(TimeLine)

前言 在使用uni-app开发微信小程序过程中&#xff0c;遇到了时间轴布局&#xff0c;由于每项的内容高度不一致&#xff0c;使用uniapp自带的扩展组件uni-steps&#xff0c;样式布局无法对齐竖线&#xff0c;于是自己造轮子&#xff0c;完成特殊的布局。显示效果如下&#xff1…

71 # 协商缓存的配置:通过内容

对比&#xff08;协商&#xff09;缓存 比较一下再去决定是用缓存还是重新获取数据&#xff0c;这样会减少网络请求&#xff0c;提高性能。 对比缓存的工作原理 客户端第一次请求服务器的时候&#xff0c;服务器会把数据进行缓存&#xff0c;同时会生成一个缓存标识符&#…

day12 13-牛客67道剑指offer-JZ83、70、63、47、48、46、21、81

1. JZ83 剪绳子&#xff08;进阶版&#xff09; class Solution { public:int jumpFloorII(int number) {if(number < 1) return number;int temp 1;int res 0;/*2级台阶 23级台阶 44级台阶 65级台阶 16*/for(int i2; i<number; i){res 2 * temp;temp res;}return re…

docker 安装elasticsearch、kibana

下载es镜像 docker pull elasticsearch 启动es容器 docker run --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -d elasticsearch 验证es界面访问 ​​​​​http://节点ip:9200/ ​…