Python实战之使用Python进行数据挖掘详解

640?wx_fmt=png&wxfrom=13&tp=wxpic


一、Python数据挖掘

1.1 数据挖掘是什么?

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过算法,找出其中的规律、知识、信息的过程。Python作为一门广泛应用的编程语言,拥有丰富的数据挖掘库,使得数据挖掘变得更加容易。

1.2 Python的优势

为什么我们要选择Python来进行数据挖掘呢?以下几点原因可能解答你的疑惑:

  • 语法简洁,易学易用

  • 丰富的数据挖掘库和工具

  • 跨平台性,可在多种操作系统中运行

  • 社区活跃,庞大的用户基础

二、Python数据挖掘的基本流程📚

接下来,我们将通过一个实际案例来揭示Python数据挖掘的基本流程。假设我们手头有一份销售数据,需要分析哪些产品最受欢迎,以便调整经营策略。

2.1 数据收集

首先,我们需要从各个渠道收集销售数据。在这个案例中,我们可以从数据库、API接口、Web爬虫等途径获取数据。这里我们使用pandas库来读取一个CSV文件中的数据。

import pandas as pd# 读取CSV文件
data = pd.read_csv("sales_data.csv")

文件内容形如:

日期,产品,销售额,销售量
2022-01-01,产品A,1000,10
2022-01-02,产品B,2000,20
2022-01-03,产品C,3000,30
2022-01-04,产品A,4000,40
2022-01-05,产品B,5000,50
2022-01-06,产品D,6000,60
2022-01-07,产品A,7000,70
2022-01-08,产品C,8000,80
2022-01-09,产品B,9000,90
2022-01-10,产品A,10000,100

2.2 数据预处理

收集到的数据很可能存在缺失值、重复值、异常值等问题,需要进行预处理。这里我们用pandas进行数据清洗。

# 去除重复值
data = data.drop_duplicates()# 填补缺失值
data = data.fillna(method="ffill")# 查找异常值并处理
data = data[data["销售额"] > 0]

2.3 数据分析

我们要根据业务需求进行数据分析。例如,我们可以分析不同产品的销售额、销售量等。这里我们使用pandas和matplotlib库进行数据分析和可视化。

import matplotlib.pyplot as plt# 按产品统计销售额
product_sales = data.groupby("产品")["销售额"].sum()# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额统计")
plt.show()

2.4 结果呈现

最后,我们将分析结果以表格、图表等形式呈现给决策者。这里我们使用pandas和matplotlib生成一个销售额排名的表格和柱状图。

# 排序
product_sales = product_sales.sort_values(ascending=False)# 输出销售额排名
print(product_sales)# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额排名")
plt.show()

三、Python数据挖掘实战:豆瓣电影评分分析🎬

3.1 项目背景

假如我们是一家电影制作公司,想要了解近年来观众喜欢的电影类型和特点,以便制定新电影的发展策略。我们将通过分析豆瓣电影评分数据,提取有价值的信息。

3.2 数据获取

我们使用Python的requests库和BeautifulSoup库爬取豆瓣电影榜单页面,抓取电影名称、类型、评分等信息。

import requests
from bs4 import BeautifulSoupurl = "https://movie.douban.com/top250"
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')movie_list = []
for item in soup.find_all('div', class_='item'):title = item.find('span', class_='title').textgenres = item.find('span', class_='genre').text.strip()rating = float(item.find('span', class_='rating_num').text)movie_list.append({'title': title, 'genres': genres, 'rating': rating})movies_df = pd.DataFrame(movie_list)

3.3 数据预处理

这里我们需要对数据进行简单的预处理,例如拆分电影类型字段,使得每个类型单独成列。

# 拆分电影类型字段
genres_df = movies_df['genres'].str.get_dummies(sep='/').add_prefix('genre_')
movies_df = pd.concat([movies_df, genres_df], axis=1)

3.4 数据分析

我们可以分析不同类型电影的平均评分、数量等,找出观众喜欢的电影类型。这里我们使用pandas和matplotlib库进行数据分析和可视化。

# 计算各类型电影的数量
genre_counts = genres_df.sum().sort_values(ascending=False)# 绘制饼图
plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%')
plt.title("电影类型比例")
plt.show()# 计算各类型电影的平均评分
genre_ratings = movies_df.groupby('genres')['rating'].mean().sort_values(ascending=False)# 绘制柱状图
plt.bar(genre_ratings.index, genre_ratings.values)
plt.xlabel("类型")
plt.ylabel("平均评分")
plt.title("各类型电影平均评分")
plt.xticks(rotation=90)
plt.show()

3.5 结果呈现

根据分析结果,我们可以看出观众喜欢的电影类型,并制定相应的发展策略。例如,选择高评分的类型制作新电影,或者研究具有一定特点的电影,提高影片的吸引力。

四、技术总结

通过上述案例,我们了解了Python在数据挖掘领域的强大能力,探索了如何从海量数据中找到隐藏的价值。希望这篇文章能给你在数据挖掘之路上带来启发。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94600.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年国赛数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…

恒运资本:机构持仓比例多少是重仓?

组织投资者关于股票商场的影响越来越大,其持股份额已成为点评一只股票好坏的重要目标之一。但组织持仓份额究竟多少才算是重仓呢?这涉及到许多要素,让我们从多个视点进行剖析。 1.不同组织的界说不同 首要需求注意的是,不同的组织…

Mr. Cappuccino的第63杯咖啡——Spring之AnnotationConfigApplicationContext源码分析

Spring之AnnotationConfigApplicationContext源码分析 源码分析 源码分析 以上一篇文章《Spring之Bean的生命周期》的代码进行源码分析 AnnotationConfigApplicationContext applicationContext new AnnotationConfigApplicationContext(SpringConfig02.class); LifeCycleBe…

uniapp编写微信小程序遇到的坑总结

1、阻止事件冒泡 使用uniapp开发微信小程序的时候,发现使用click.stop来阻止事件冒泡没有作用,点击了之后发现仍然会触发父组件或者祖先组件的事件。 在网上查阅,发现使用tap.stop才能阻止事件冒泡。 2、二维码生成 在网上找了很多&…

MQTT协议-EMQX技术文档-spring-boot整合使用--发送接收-消费

概念先行: mqtt与mq的关系 MQTT(Message Queuing Telemetry Transport)是一种基于发布/订阅模式的通信协议,它与MQ(Message Queue,消息队列)有一定的关联,但二者并不完全相同。 M…

重发布 路由策略

[r4]ip ip_prefix 15 permit 192.168.3.0 24. 根据序号插入规则 [r4]undo ip-prefix aa index 15. 删除规则 [r4]ip ip-prefix aa permit 192.168.3.0 24 less- equal 28 抓取目标网段为3.0掩码长度为24到28的路由 [r4]ip ip-prefix aa permit 192.168.3.0 24 greate…

【K8S系列】Weave Net 故障排除的常见问题和解决方案

写在前面 当使用 Weave Net 进行容器网络配置时,可能会遇到一些常见的故障情况。以下是一些常见问题及其解决方案: 问题列表 1 节点无法加入 Weave Net 网络 解决方案 检查节点之间的网络连通性,确保可以通过 IP 地址相互访问。 检查节点的…

大模型时代,图像描述生成(image caption)怎么走?

背景 Image caption是计算机视觉研究领域中的一个重要分支,其主要目标是根据输入的图像信息,生成相应的文字描述,从而完成对图像内容的准确描述。对于图像描述任务而言,最关键的是能够将图片中的信息以清晰准确的文字形式展现出来…

基于python+MobileNetV2算法模型实现一个图像识别分类系统

一、目录 算法模型介绍模型使用训练模型评估项目扩展 二、算法模型介绍 图像识别是计算机视觉领域的重要研究方向,它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制,设计高效的图像识别算法变得尤为重要。…

Android DataStore:安全存储和轻松管理数据

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、使用3.1 Preferences DataStore添加依赖数据读…

解决校园网使用vmware桥接模式,虚拟机与物理机互相ping通,但是虚拟机ping不通百度的问题

遇到的问题 使用校园网时,桥接模式下,物理机可以ping通虚拟机,但是虚拟机ping不通主机 解决方法 在物理机中查看网络相关信息 ipconfig 修改虚拟机网卡信息 vim /etc/sysconfig/network-scripts/ifcfg-ens33 注意 /ifcfg-ens33需要根据…

批次效应分析

写在前面 批次效应分析,在医学芯片研究中,使用不同芯片进行分析时常用的数据处理方式,但是很多同学处理后的数据,存在不满意的情况。因此,到处咨询,各种查教程。今天,使用简短的时间分享该数据处理教程。 最终分析结果 欢迎投稿 小杜一直在分享自己平时学习笔记,因此…

Redis——三个特殊的数据类型+事务

概述 全称为远程字典服务。 Redis——基础篇(包含redis在云服务上的docker化安装和连接以及常用命令)_连接docker中的redis_北岭山脚鼠鼠的博客-CSDN博客 Redis能干什么? 1.内存存储、持久化,内存中是断电即失,因此持久化很重要&#xff…

golang中使用chan控制协程并发简单事例

func main() {processNum : 5ch : make(chan struct{}, processNum)for true {ch <- struct{}{}go func() {defer func() {<-ch}()fmt.Println("我是协程", time.Now().UnixNano())time.Sleep(time.Second * 5)}()} } 可以看到&#xff0c;这里每5s会执行一次带…

STM32/AT32 MCO管脚输出时钟配置

前言&#xff1a;最近在学以太网通讯&#xff0c;发现RMII接口配置的时钟管脚有MCU自己输出&#xff0c;想要看看是怎么输出的&#xff0c;对此进行记录 1、交接项目项目上使用的是PA8管脚来输出时钟50MHZ&#xff0c;提供给上面refclk。 先看手册 PA8的复用功能具备将MCU时钟…

拒绝摆烂!C语言练习打卡第三天

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;每日一练 &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、选择题 &#x1f4dd;1.第一题 &#x1f4dd;2.第二题 &#x1f4…

java练习3.快速查找

题目: 数组 arr[6,1,3,7,9,8,5,4,2],用快速排序进行升序排序. import java.util.Random;public class recursionDemo {public static void main(String[] args) {/*快速排序:* 第一轮:以0索引为基准数,确定基准数在数组正确的位置,* 比基准数小的放到左边,比基准数大的放在右边…

【Linux】【驱动】应用层和驱动层传输数据

【Linux】【驱动】应用层和驱动层传输数据 绪论1.如果我在应用层使用系统0 对设备节点进行打开&#xff0c;关闭&#xff0c;读写等操作会发生什么呢? 2 我们的应用层和内核层是不能直接进行数据传输的3 驱动部分的代码4 应用代码5 编译以及运行代码 绪论 Linux一切皆文件! 文…

Maven自定义脚手架(多module模块)+自定义参数

脚手架 视频教程&#xff1a; Maven保姆级教程 脚手架是一个项目模板&#xff0c;包含常用的工程结构、代码。 1 自定义脚手架 脚手架创建的步骤如下&#xff0c;先创建一个工程&#xff0c;把常用的代码写好&#xff0c;进入工程根目录&#xff0c;进行如下操作&#xff1a; …

Angular安全专辑之二——‘unsafe-eval’不是以下内容安全策略中允许的脚本源

一&#xff1a;错误出现 这个错误的意思是&#xff0c;拒绝将字符串评估为 JavaScript&#xff0c;因为‘unsafe-eval’不是以下内容安全策略中允许的脚本源。 二&#xff1a;错误场景 testEval() {const data eval("var sum2 new Function(a, b, return a b); sum2(em…