【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现

序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】最小二乘法,从线性回归出发,数值举例并用最小二乘法求解回归模型
6【数理知识】最小二乘法,一般线性情况,矩阵化表示过程,最佳参数的求解公式过程
7【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
8【数理知识】奇异值分解,从数据的线性变换角度来理解
9【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限
10【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现
11【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1. 欧拉角(Euler Angles)表示法
  • 2. 四元数(Quaternion)表示法
  • 3. 四元数转欧拉角
  • 4. 欧拉角转四元数
  • Ref

之前我们已经讨论过旋转矩阵。需要再次强调的是,旋转的顺序很重要,并且会影响最终的结果。先旋转 X X X 轴,再旋转 Y Y Y 轴,最后旋转 Z Z Z 轴得到的结果与先旋转 Z Z Z 轴,再旋转 Y Y Y 轴,最后旋转 X X X 轴得到的结果是不同的。这种顺序的差异导致了不同的方向和空间方向的变化。这也是为什么在实际应用中,我们需要明确指定旋转顺序,以确保我们得到正确和一致的结果。

这次基于三维空间,讨论下旋转矩阵的两种表示方法,分别是欧拉角表示法,四元数表示法,以及二者之间的转换关系如何。

在三维空间中,旋转矩阵 R R R 的维度为 3 × 3 3 \times 3 3×3,其是一个正交矩阵,行列式为 1 1 1

1. 欧拉角(Euler Angles)表示法

欧拉角通常由三个角度组成

  • 滚转角(roll),常用符号为 ϕ \phi ϕ
  • 俯仰角(pitch),常用符号为 θ \theta θ
  • 偏航角(yaw),常用符号为 ψ \psi ψ

这三个角度分别描述了绕 X , Y , Z X, Y, Z X,Y,Z 轴旋转的角度。

X X X 轴旋转 ϕ \phi ϕ 角度的旋转矩阵为

R x ( ϕ ) = [ 1 0 0 0 cos ⁡ ( ϕ ) − sin ⁡ ( ϕ ) 0 sin ⁡ ( ϕ ) cos ⁡ ( ϕ ) ] R_x(\phi) = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \\ \end{matrix}\right] Rx(ϕ)= 1000cos(ϕ)sin(ϕ)0sin(ϕ)cos(ϕ)

Y Y Y 轴旋转 θ \theta θ 角度的旋转矩阵为

R y ( θ ) = [ cos ⁡ ( θ ) 0 sin ⁡ ( θ ) 0 1 0 − sin ⁡ ( θ ) 0 cos ⁡ ( θ ) ] R_y(\theta) = \left[\begin{matrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \\ \end{matrix}\right] Ry(θ)= cos(θ)0sin(θ)010sin(θ)0cos(θ)

Z Z Z 轴旋转 ψ \psi ψ 角度的旋转矩阵为

R z ( ψ ) = [ cos ⁡ ( ψ ) − sin ⁡ ( ψ ) 0 sin ⁡ ( ψ ) cos ⁡ ( ψ ) 0 0 0 1 ] R_z(\psi) = \left[\begin{matrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] Rz(ψ)= cos(ψ)sin(ψ)0sin(ψ)cos(ψ)0001

例如,对于一个分别依次绕固定轴 X Y Z XYZ XYZ 的欧拉角表示,其旋转矩阵为

R = R z ( ϕ ) R y ( θ ) R x ( ψ ) = [ cos ⁡ ( θ ) cos ⁡ ( ψ ) sin ⁡ ( ϕ ) sin ⁡ ( θ ) cos ⁡ ( ψ ) − cos ⁡ ( ϕ ) sin ⁡ ( ψ ) cos ⁡ ( ϕ ) sin ⁡ ( θ ) cos ⁡ ( ψ ) + sin ⁡ ( ϕ ) sin ⁡ ( ψ ) cos ⁡ ( θ ) sin ⁡ ( ψ ) sin ⁡ ( ϕ ) sin ⁡ ( θ ) sin ⁡ ( ψ ) + cos ⁡ ( ϕ ) cos ⁡ ( ψ ) cos ⁡ ( ϕ ) sin ⁡ ( θ ) sin ⁡ ( ψ ) − sin ⁡ ( ϕ ) cos ⁡ ( ψ ) − sin ⁡ ( θ ) sin ⁡ ( ϕ ) cos ⁡ ( θ ) cos ⁡ ( ϕ ) cos ⁡ ( θ ) ] \begin{aligned} R &= R_z(\phi) R_y(\theta) R_x(\psi) \\ &= \left[\begin{matrix} \cos(\theta)\cos(\psi) & \sin(\phi)\sin(\theta)\cos(\psi) - \cos(\phi)\sin(\psi) & \cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi) \\ \cos(\theta)\sin(\psi) & \sin(\phi)\sin(\theta)\sin(\psi) + \cos(\phi)\cos(\psi) & \cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi) \\ -\sin(\theta) & \sin(\phi)\cos(\theta) & \cos(\phi)\cos(\theta) \\ \end{matrix}\right] \end{aligned} R=Rz(ϕ)Ry(θ)Rx(ψ)= cos(θ)cos(ψ)cos(θ)sin(ψ)sin(θ)sin(ϕ)sin(θ)cos(ψ)cos(ϕ)sin(ψ)sin(ϕ)sin(θ)sin(ψ)+cos(ϕ)cos(ψ)sin(ϕ)cos(θ)cos(ϕ)sin(θ)cos(ψ)+sin(ϕ)sin(ψ)cos(ϕ)sin(θ)sin(ψ)sin(ϕ)cos(ψ)cos(ϕ)cos(θ)

这个矩阵代表了首先绕 X X X 轴旋转 ϕ \phi ϕ 角,然后绕 Y Y Y 轴旋转 θ \theta θ 角,再然后绕 Z Z Z 轴旋转 ψ \psi ψ 角的总的旋转效果。

更多关于欧拉角的推导和细节可参考文章:第3章-数理知识基础 -> 坐标转换和【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限。

% 给定欧拉角 phi theta psi
phi   = deg2rad(10);  % 示例:10度,记得转换为弧度
theta = deg2rad(22);  % 示例:22度
psi   = deg2rad(35);  % 示例:35度R_x = [ 1  0         00  cos(phi) -sin(phi)0  sin(phi)  cos(phi)];R_y = [ cos(theta)  0  sin(theta)0           1  0-sin(theta)  0  cos(theta)];R_z = [ cos(psi) -sin(psi)  0sin(psi)  cos(psi)  00         0         1];R = R_z * R_y * R_x;R = [cos(theta)*cos(psi)  sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi)  cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi)cos(theta)*sin(psi)  sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi)  cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi)-sin(theta)           sin(phi)*cos(theta)                             cos(phi)*cos(theta)];
R =0.7595   -0.5116    0.40180.5318    0.8440    0.0694-0.3746    0.1610    0.9131

% 给定点坐标
point_1 = [ 102235];
point_2 = R * point_1;figure()
scatter3(point_1(1), point_1(2), point_1(3), 150, 'r'); hold on;
scatter3(point_2(1), point_2(2), point_2(3), 150, 'b');

请添加图片描述


2. 四元数(Quaternion)表示法

四元数是由 1 1 1 个实数加上 3 3 3 个复数组合而成,通常可以表示为

q = q w + q x i + q y j + q z k q = q_w + q_x \text{i} + q_y \text{j} + q_z \text{k} q=qw+qxi+qyj+qzk

其中 q w , q x , q y , q z q_w, q_x, q_y, q_z qw,qx,qy,qz 都是实数, i, j, k \text{i, j, k} i, j, k 是四元数的基元,满足如下所示的乘法关系

  • i 2 = j 2 = k 2 = ijk = − 1 \text{i}^2 = \text{j}^2 = \text{k}^2 = \text{i}\text{j}\text{k} = -1 i2=j2=k2=ijk=1
  • i 0 = j 0 = k 0 = 1 \text{i}^0 = \text{j}^0 = \text{k}^0 = 1 i0=j0=k0=1

四元数还可看作由一个标量和一个向量组成,其中 q w q_w qw 是四元数的标量部分, q x , q y , q z q_x, q_y, q_z qx,qy,qz 构成四元数的向量部分。


假设有两个四元数分别为 q 1 = ( q w 1 , [ q x 1 , q y 1 , q z 1 ] ) q_1 = (q_{w1}, [q_{x1}, q_{y1}, q_{z1}]) q1=(qw1,[qx1,qy1,qz1]) q 2 = ( q w 2 , [ q x 2 , q y 2 , q z 2 ] ) q_2 = (q_{w2}, [q_{x2}, q_{y2}, q_{z2}]) q2=(qw2,[qx2,qy2,qz2]),同时令 v 1 = [ q x 1 , q y 1 , q z 1 ] v_1 = [q_{x1}, q_{y1}, q_{z1}] v1=[qx1,qy1,qz1] v 2 = [ q x 2 , q y 2 , q z 2 ] v_2 = [q_{x2}, q_{y2}, q_{z2}] v2=[qx2,qy2,qz2],则有如下运算法则

  • 四元数的和: q 1 + q 2 = ( q w 1 + q w 2 , ( v 1 + v 2 ) ) q_1 + q_2 = (q_{w1}+q_{w2}, (v_1 +v_2)) q1+q2=(qw1+qw2,(v1+v2))
  • 四元数乘法: q 1 q 2 = q w 1 q w 2 − v 1 ⋅ v 2 + q w 1 v 2 + q w 2 v 1 + v 1 × v 2 = ( q w 1 q w 2 − v 1 ⋅ v 2 , ( q w 1 v 2 + q w 2 v 1 + v 1 × v 2 ) ) q_1 q_2 = q_{w1} q_{w2} - v_1 \cdot v_2 + q_{w1} v_2 + q_{w2} v_1 + v_1 \times v_2 = (q_{w1} q_{w2} - v_1 \cdot v_2, (q_{w1} v_2 + q_{w2} v_1 + v_1 \times v_2)) q1q2=qw1qw2v1v2+qw1v2+qw2v1+v1×v2=(qw1qw2v1v2,(qw1v2+qw2v1+v1×v2))
  • 四元数的模: ∥ q 1 ∥ = q w 1 2 + q x 1 2 + q y 1 2 + q z 1 2 \|q_1\| = \sqrt{q_{w1}^2 + q_{x1}^2 + q_{y1}^2 + q_{z1}^2} q1=qw12+qx12+qy12+qz12
  • 单位四元数: ∥ q 1 ∥ = 1 \|q_1\| = 1 q1=1
  • 四元数的共轭: q 1 ∗ = ( q w 1 , − v 1 ) q_1^* = (q_{w1}, -v_1) q1=(qw1,v1)
  • 四元数的逆: q 1 − 1 = q 1 ∗ ∥ q 1 ∥ q_1^{-1} = \frac{q_1^*}{\|q_1\|} q11=q1q1

四元数是一个扩展的复数系统,常用于表示三维空间中的旋转。

一个单位四元数(长度为 1 1 1)可以表示 3D 空间中的旋转。将一个点旋转到另一个位置可以通过四元数乘法来完成。

X X X 轴旋转 ϕ \phi ϕ 角度的四元数为

q ϕ = ( cos ⁡ ( ϕ 2 ) , sin ⁡ ( ϕ 2 ) , 0 , 0 ) q_\phi = (\cos(\frac{\phi}{2}), \sin(\frac{\phi}{2}), 0, 0) qϕ=(cos(2ϕ),sin(2ϕ),0,0)

Y Y Y 轴旋转 θ \theta θ 角度的四元数为

q θ = ( cos ⁡ ( θ 2 ) , 0 , sin ⁡ ( θ 2 ) , 0 , 0 ) q_\theta = (\cos(\frac{\theta}{2}), 0, \sin(\frac{\theta}{2}), 0, 0) qθ=(cos(2θ),0,sin(2θ),0,0)

Z Z Z 轴旋转 ψ \psi ψ 角度的四元数为

q ψ = ( cos ⁡ ( ψ 2 ) , 0 , 0 , sin ⁡ ( ψ 2 ) ) q_\psi = (\cos(\frac{\psi}{2}), 0, 0, \sin(\frac{\psi}{2})) qψ=(cos(2ψ),0,0,sin(2ψ))

总旋转的四元数是这三个四元数的乘积。四元数乘法不是通常的标量乘法,它有特定的乘法规则。

给定一个四元数 q q q(模长为 1,有关系 q w 2 + q x 2 + q y 2 + q z 2 = 1 \sqrt{q_w^2+q_x^2+q_y^2+q_z^2}=1 qw2+qx2+qy2+qz2 =1),假设采用的旋转顺序为 X Y Z XYZ XYZ,其对应的旋转矩阵 R R R 可以表示为

R = [ 1 − 2 ( q y 2 + q z 2 ) 2 ( q x q y − q w q z ) 2 ( q x q z + q w q y ) 2 ( q x q y + q w q z ) 1 − 2 ( q x 2 + q z 2 ) 2 ( q y q z − q w q x ) 2 ( q x q z − q w q y ) 2 ( q y q z + q w q x ) 1 − 2 ( q x 2 + q y 2 ) ] \begin{aligned} R &= \left[\begin{matrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_w q_z) & 2(q_x q_z + q_w q_y) \\ 2(q_x q_y + q_w q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_w q_x) \\ 2(q_x q_z - q_w q_y) & 2(q_y q_z + q_w q_x) & 1 - 2(q_x^2 + q_y^2) \\ \end{matrix}\right] \end{aligned} R= 12(qy2+qz2)2(qxqy+qwqz)2(qxqzqwqy)2(qxqyqwqz)12(qx2+qz2)2(qyqz+qwqx)2(qxqz+qwqy)2(qyqzqwqx)12(qx2+qy2)

单位四元数在描述 3D 旋转时有一些优势,其不受欧拉角中的 “万向锁” 问题的影响。

% 给定四元数
quaternion = [0.9376  0.0244  0.2070  0.2782];  q_w = quaternion(1);
q_x = quaternion(2);
q_y = quaternion(3);
q_z = quaternion(4);% 计算旋转矩阵 R
R(1,1) = 1 - 2*(q_y^2 + q_z^2);
R(1,2) = 2*(q_x*q_y - q_w*q_z);
R(1,3) = 2*(q_x*q_z + q_w*q_y);
R(2,1) = 2*(q_x*q_y + q_w*q_z);
R(2,2) = 1 - 2*(q_x^2 + q_z^2);
R(2,3) = 2*(q_y*q_z - q_w*q_x);
R(3,1) = 2*(q_x*q_z - q_w*q_y);
R(3,2) = 2*(q_y*q_z + q_w*q_x);
R(3,3) = 1 - 2*(q_x^2 + q_y^2);
R =0.7595   -0.5116    0.40170.5318    0.8440    0.0694-0.3746    0.1609    0.9131

3. 四元数转欧拉角

从四元数到欧拉角的转换并不是唯一的,因为对于某些旋转,存在多种欧拉角表示。但是,对于大多数实际应用,可以从一个特定的四元数计算一个特定的欧拉角集。

给定四元数 q = ( q w , q x , q y , q z ) q = (q_w, q_x, q_y, q_z) q=(qw,qx,qy,qz),若想将它转换为 X Y Z XYZ XYZ 顺序的欧拉角 ( ϕ , θ , ψ ) (\phi, \theta, \psi) (ϕ,θ,ψ)。以下是从四元数到欧拉角的转换方法

ϕ = atan2 ( 2 ( q w q x + q y q z ) , 1 − 2 ( q x 2 + q y 2 ) ) θ = arcsin ⁡ ( 2 ( q w q y − q x q z ) ) ψ = atan2 ( 2 ( q w q z + q x q y ) , 1 − 2 ( q y 2 + q z 2 ) ) \begin{aligned} \phi &= \text{atan2} (2(q_w q_x + q_y q_z), 1-2(q_x^2 + q_y^2)) \\ \theta &= \text{} \arcsin (2(q_w q_y - q_x q_z)) \\ \psi&= \text{atan2} (2(q_w q_z + q_x q_y), 1-2(q_y^2 + q_z^2)) \end{aligned} ϕθψ=atan2(2(qwqx+qyqz),12(qx2+qy2))=arcsin(2(qwqyqxqz))=atan2(2(qwqz+qxqy),12(qy2+qz2))

其中 atan2 ( ) \text{atan2}() atan2() 不是 arctan ⁡ ( ) \arctan() arctan()

举例说明,因为若使用 arctan ⁡ ( y / x ) \arctan(y/x) arctan(y/x),其返回值在 [ − π / 2 , π / 2 ] [-\pi/2, \pi/2] [π/2,π/2] 之间,因为它不能区分 x x x 的正负。而 atan2 ( y , x ) \text{atan2}(y, x) atan2(y,x),其返回值在 [ − π , π ] [-\pi, \pi] [π,π] 之间,可以区分 x x x 的正负,因此更为实用,尤其是在计算欧拉角时。更重要的是, atan2 ( y , x ) \text{atan2}(y, x) atan2(y,x) 能够处理 x = 0 x=0 x=0 的情况,这在计算角度或欧拉角时非常有用。

注意,由于使用 arcsin ⁡ ( ) \arcsin() arcsin(),当 θ \theta θ 接近 ± 90 ° \pm 90\degree ±90° 时,可能会出现数值不稳定。这是因为在这些极端情况下,航向和滚动变得不可区分,这就是所谓的万向锁问题。

% 给定四元数
quaternion = [0.9376  0.0244  0.2070  0.2782];  q_w = quaternion(1);
q_x = quaternion(2);
q_y = quaternion(3);
q_z = quaternion(4);% 转换四元数到欧拉角
phi   = atan2(2*(q_w*q_x + q_y*q_z), 1 - 2*(q_x^2 + q_y^2));
theta = asin(2*(q_w*q_y - q_z*q_x));
psi   = atan2(2*(q_w*q_z + q_x*q_y), 1 - 2*(q_y^2 + q_z^2));% 如果需要角度形式而不是弧度,可以转换为度
phi_deg   = rad2deg(phi);
theta_deg = rad2deg(theta);
psi_deg   = rad2deg(psi);
phi_deg =9.9953theta_deg =21.9990psi_deg =34.9983

4. 欧拉角转四元数

给定三个欧拉角 ϕ , θ , ψ \phi, \theta, \psi ϕ,θ,ψ,相应的四元数为

q w = cos ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) + sin ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q x = sin ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) − cos ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q y = cos ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) + sin ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) q z = cos ⁡ ( ϕ 2 ) cos ⁡ ( θ 2 ) sin ⁡ ( ψ 2 ) − sin ⁡ ( ϕ 2 ) sin ⁡ ( θ 2 ) cos ⁡ ( ψ 2 ) \begin{aligned} q_w &= \cos(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\psi}{2}) + \sin(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_x &= \sin(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\psi}{2}) - \cos(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_y &= \cos(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \cos(\frac{\psi}{2}) + \sin(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \sin(\frac{\psi}{2}) \\ q_z &= \cos(\frac{\phi}{2}) \cos(\frac{\theta}{2}) \sin(\frac{\psi}{2}) - \sin(\frac{\phi}{2}) \sin(\frac{\theta}{2}) \cos(\frac{\psi}{2}) \end{aligned} qwqxqyqz=cos(2ϕ)cos(2θ)cos(2ψ)+sin(2ϕ)sin(2θ)sin(2ψ)=sin(2ϕ)cos(2θ)cos(2ψ)cos(2ϕ)sin(2θ)sin(2ψ)=cos(2ϕ)sin(2θ)cos(2ψ)+sin(2ϕ)cos(2θ)sin(2ψ)=cos(2ϕ)cos(2θ)sin(2ψ)sin(2ϕ)sin(2θ)cos(2ψ)

得到的四元数是 ( q w , q x , q y , q z ) (q_w, q_x, q_y, q_z) (qw,qx,qy,qz)

phi   = deg2rad(10);  % 示例:10度,记得转换为弧度
theta = deg2rad(22);  % 示例:22度
psi   = deg2rad(35);  % 示例:35度% 计算四元数
q_w = cos(phi/2) * cos(theta/2) * cos(psi/2) + sin(phi/2) * sin(theta/2) * sin(psi/2);
q_x = sin(phi/2) * cos(theta/2) * cos(psi/2) - cos(phi/2) * sin(theta/2) * sin(psi/2);
q_y = cos(phi/2) * sin(theta/2) * cos(psi/2) + sin(phi/2) * cos(theta/2) * sin(psi/2);
q_z = cos(phi/2) * cos(theta/2) * sin(psi/2) - sin(phi/2) * sin(theta/2) * cos(psi/2);quaternion = [q_w, q_x, q_y, q_z];
quaternion =0.9376    0.0244    0.2070    0.2782

Ref

  1. 旋转矩阵 - Wikipedia
  2. 干货整理:欧拉角、旋转矩阵、四元数合辑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96465.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】每日一题(找到所有数组中消失的数字)

找到所有数组中消失的数字,链接奉上。 这里简单说一下,因为还没有接触到动态内存,数据结构,所以知识有限,也是尽力而为,结合题库的评论区找到了适合我的解法,以后有机会,会补上各种…

视频云存储/安防监控/视频汇聚EasyCVR平台新增设备经纬度选取

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、…

使用Vscode调试shell脚本

在vcode中安装bash dug插件 在vcode中添加launch.json配置,默认就好 参考:http://www.rply.cn/news/73966.html 推荐插件: shellman(支持shell,智能提示) shellcheck(shell语法检查) shell-format(shell格式化)

MR300C工业无线WiFi图传模块 内窥镜机器人图像传输有线无线的两种方式

MR300C无线WiFi图传模使用方法工业机器人图像高清传输 ⚫ MR300C图传模块基于MIPS处理器实现,电脑/手机连接模块的WIFI热点或网口即可查看视频流 ⚫ 模块的USB 2.0 Host接口,可接入USB uvc摄像头/内窥镜默认输出的视频格式必须是MJPG ⚫ 模块支持接入摄…

【Spring Cloud 八】Spring Cloud Gateway网关

gateway网关 系列博客背景一、什么是Spring Cloud Gateway二、为什么要使用Spring Cloud Gateway三、 Spring Cloud Gateway 三大核心概念4.1 Route(路由)4.2 Predicate(断言)4.3 Filter(过滤) 五、Spring …

Datawhale Django后端开发入门Task01 Vscode配置环境

首先呢放一张运行成功的截图纪念一下,感谢众多小伙伴的帮助呀,之前没有配置这方面的经验 ,但还是一步一步配置成功了,所以在此以一个纯小白的经验分享如何配置成功。 1.选择要建立项目的文件夹,打开文件找到目标文件夹…

全面梳理Python下的NLP 库

一、说明 Python 对自然语言处理库有丰富的支持。从文本处理、标记化文本并确定其引理开始,到句法分析、解析文本并分配句法角色,再到语义处理,例如识别命名实体、情感分析和文档分类,一切都由至少一个库提供。那么,你…

公网远程连接Redis数据库详解

文章目录 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址4.3 使用固定的tcp地址连接 前言 洁洁的个人主页 我就问你有没有发挥&#xff0…

一站式自动化测试平台-Autotestplat

3.1 自动化平台开发方案 3.1.1 功能需求 3.1.3 开发时间计划 如果是刚入门、但有一点代码基础的测试人员,大概 3 个月能做出演示版(Demo)进行自动化测试,6 个月内胜任开展工作中项目的自动化测试。 如果是有自动化测试基础的测试人员,大概 …

实现Java异步调用的高效方法

文章目录 为什么需要异步调用?Java中的异步编程方式1. 使用多线程2. 使用Java异步框架 异步调用的关键细节结论 🎉欢迎来到Java学习路线专栏~实现Java异步调用的高效方法 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博…

Redis基本操作

根据哔站黑马教学笔记写的笔记:https://www.bilibili.com/video/BV1cr4y1671t?p1&vd_source6a3f27eeec2d16afabc65c8f5e06eac7 1. 初识Redis2. Redis常见命令2.1 通用命令2.2 String 类型2.2.1 String 的常见命令2.2.2 key 结构 2.3 Hash 类型2.4 List 类型2.…

第58步 深度学习图像识别:Transformer可视化(Pytorch)

一、写在前面 (1)pytorch_grad_cam库 这一期补上基于基于Transformer框架可视化的教程和代码,使用的是pytorch_grad_cam库,以Bottleneck Transformer模型为例。 (2)算法分类 pytorch_grad_cam库中包含的…

2023.8.19-2023.8.XX 周报【人脸3D+虚拟服装方向基础调研-Cycle Diffusion\Diffusion-GAN\】更新中

学习目标 1. 这篇是做diffusion和gan结合的,可以参照一下看看能不能做cyclegan的形式,同时也可以调研一下有没有人follow这篇论文做了类似cyclegan的事情 Diffusion-GAN论文精读https://arxiv.org/abs/2206.02262 2. https://arxiv.org/abs/2212.06…

无涯教程-TensorFlow - 优化器

Optimizers是扩展类,其中包括用于训练特定模型的附加信息,Optimizers类使用给定的参数初始化,用于提高速度和性能,以训练特定模型。 TensorFlow的基本Optimizers是- tf.train.Optimizer 此类在tensorflow/python/training/opti…

高级艺术二维码制作教程

最近不少关于二维码制作的,而且都是付费。大概就是一个好看的二维码,扫描后跳转网址。本篇文章使用Python来实现,这么简单花啥钱呢?学会,拿去卖便宜点吧。 文章目录 高级二维码制作环境安装普通二维码艺术二维码动态 …

vue中实现文字检索时候将搜索内容标红

实现结果 html&#xff1a; <div class"searchBox"><span class"bt">标&#8195&#8195题</span><div class"search"><div class"shuru"><!-- <span class"title">生产经营<…

安装软件包

安装软件包 创建一个名为 /home/curtis/ansible/packages.yml 的 playbook : 将 php 和 mariadb 软件包安装到 dev、test 和 prod 主机组中的主机上 将 RPM Development Tools 软件包组安装到 dev 主机组中的主机上 将 dev 主机组中主机上的所有软件包更新为最新版本 vim packa…

Spring Cloud 系列之OpenFeign:(7)链路追踪zipkin

传送门 Spring Cloud Alibaba系列之nacos&#xff1a;(1)安装 Spring Cloud Alibaba系列之nacos&#xff1a;(2)单机模式支持mysql Spring Cloud Alibaba系列之nacos&#xff1a;(3)服务注册发现 Spring Cloud 系列之OpenFeign&#xff1a;(4)集成OpenFeign Spring Cloud …

填充柄功能

单元格右下角十字符号 顺序式填充 输入1,2&#xff0c;直接拉取即可实现顺序1到10. 复制式填充 CtrlD或者拉取&#xff0c;选择右下角复制单元格。 规律式填充 输入星期一&#xff0c;星期二&#xff0c;下拉一直可以到星期日 自定义填充 选择文件-》选项-》自定义序列 输…

proteus结合keil-arm编译器构建STM32单片机项目进行仿真

proteus是可以直接创建设计图和源码的&#xff0c;但是源码编译它需要借助keil-arm编译器&#xff0c;也就是我们安装keil-mdk之后自带的编译器。 下面给出一个完整的示例&#xff0c;主要是做一个LED灯闪烁的效果。 新建工程指定路径&#xff0c;Schematic,PCB layout都选择默…