深入理解【二叉树】

 

📙作者简介: 清水加冰,目前大二在读,正在学习C/C++、Python、操作系统、数据库等。

📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。

欢迎点赞 👍 收藏 ⭐留言 📝 如有错误还望各路大佬指正!

✨每一次努力都是一种收获,每一次坚持都是一种成长✨       

 

a6c0473e16e249c2b9ca02e5b793f35e.gif#pic_center

目录

 

 前言

1. 特殊二叉树

1.1 满二叉树

1.2 完全二叉树

1.3 二叉树的性质

2. 搜索二叉树

3. 练习

📖 题目一

📖 题目二

📖 题目三 

总结


 

 

 前言

        在计算机科学领域中,二叉树作为一种重要的数据结构,被广泛应用于各种算法和问题的解决方案中。然而,对于许多人来说,二叉树仍然是一个神秘而复杂的概念。本篇博客将带领你一同深入探索二叉树的内在结构和特性,帮助你建立起对二叉树的全面理解。


1. 特殊二叉树

         前边我们已经介绍了树的结构,也了解了普通二叉树,以及二叉树的遍历,今天我们将会继续深入学习二叉树。

1.1 满二叉树

        一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。如下图:

d71c2e3bdfd340e0ba6b5231439169f4.png


 1.2 完全二叉树

        完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。(直白点说就是:假设有n层,前n-1层为满二叉树,最后一层的节点从左到右依次连接,不会出现一个节点连不满的情况)

如下图:

e175d90e1297478dbc615a25111db280.png

        这样的它就不属于完全二叉树:

9540a312cedd427d8673daf70ff49cbf.png

 因为从左到右,有节点没有满(从左到右节点必须连满,不能出现有空)。

1.3 二叉树的性质

  1.  若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2⁽ⁱ⁻¹⁾个结点.
  2.  若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2ʰ-1
  3.  对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 n₀=n₂+1(下标为二叉树的度)
  4.  若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log₂(n+1)

        对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  •  若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  •  若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2. 搜索二叉树

        上述的二叉树对于数据存储没什么特别规定与要求,属于普通二叉树大类,对于普通二叉树来说,没有增删查改,普通二叉树的增删查改在现实应用中是没有意义的(数据没有特殊规定,无法确认新增节点的位置)。所以这里我们再来介绍一下其他的二叉树——搜索二叉树

         什么是搜索二叉树?如下图:

20f39fc751d5462f94d438b0fc0604a6.png

         任何一颗树,左子树都要比根小,右子树都要比根大。搜索二叉树的这个特性使得它的插入位置就可以确定。例如我们要插入一个数据38:

46b403eb595040bcbdc900162ec07775.png

         从根开始,38比35大,就进入右子树,38比39小,那就插入到39左子树的位置。

例如我们再插入一个40:

8f87dae73c7945b5a266b2a48e1c0cf7.png

         从根开始,40比35大,就进入右子树,40比39大,进入右子树,40比65小,那就插入到65的左孩子节点位置。

        如果我们要查找一个数,例如我们查找30,30比35小,进入左子树,30比17大,进入右子树,30比20大继续进入到右子树,但20没有子节点,所以没有30这个节点,到这里就停止寻找。通过这些例子我们可以发现,这样的二叉树很适合搜索。搜索二叉树最多搜索高度次。

        搜索的时间复杂度是O(N),细心的同学可能就会发现,搜素二叉树最多搜素高度次,那二叉树的高度不是有一个公式h= log₂(n+1),时间复杂度为什么不是O(log N)?

         这里注意:这个二叉树的高度公式针对的是满二叉树,而搜素二叉树它可能出现退化的情况。如下图:

8d3ee5a13daf44318153982b4966901e.png

 最坏的情况:我们找1这个节点,它的时间复杂度就是O(N)。

那要如何避免这种情况的发生?使左右两边的节点数量均匀,又要保持这个特性。

 这里又可以引出一个新的概念——平衡树

 平衡树的特性就是:左右两边的节点数据比较均匀。

 平衡树又可以分为:

  • AVL树
  • 红黑树

         依照现在博客所讲的水平,想要学会这两种树是不可能的,除此之外后续我们还会学习B树,它是一种多叉搜索树。数据库的原理就与它有关。(此部分为了解)这部分的树状结构才是有用的东西,精髓就在这部分内容,这里我们后续会进行学习。

        本期我们不会进行代码的编写介绍,我们要弄清楚二叉树的性质,以及延申部分。接下来就是练习部分,帮助大家理解掌握二叉树的性质。

 3. 练习

📖 题目一

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为  ()

A、不存在这样的二叉树

B、200

C、198

D、199

✨题目解析:

        度为2的节点有199个,根据二叉树的性质:n₀=n₂+1,度为0的节点个数等于度为2的节点个数+1。度为0的节点就为叶子节点。

 

正确答案:B

📖 题目二

2. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A、n

B、n+1

C、n-1

D、n/2

✨题目解析:

        这道题目看似无解,突破口就在完全二叉树。我们设度为0的节点个数为N0,度为1的节点个数为N1,度为2的节点个数为N2。根据性质可知:N0=N2+1,且N0+N1+N2=2n。

        两式联合:N0+N1+N0-1=2n。

又因为这是一颗完全二叉树,完全二叉树度为1的节点只能有1个或没有。但又要确保都为整数,所以度为1的节点就只要1个。即:N0+1+N0-1=2n

 

正确答案:A

📖 题目三 

3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )

A、11

B、10

C、8

D、12

✨题目解析:

        题目要求这棵树的高度,那就设树的高度为h,最后一层缺了X个,根据定义我们可知:满二叉树是一种特殊的完全二叉树。

        由此可得出:2^h-1-X就是完全二叉树的节点个数,即:2^h-1-X=531。到这里看似无解,但我们还可以根据性质进行推算,X的取值范围是0  ~  2^(h-1)-1,至少最后一层有1个节点,最多最后一次为满(满二叉树),知道这些我们就可以带选项进行推算了。代换:2^h-1-2^(h-1)+1。代入选项,看最终哪个选项的结果最接近500。

        代入11,2的11次方:2048-1024=1024,如果高度是11那最少有1024个节点,A选项错误。这样依次代入。

 

正确答案:B


总结

        通过本篇博客我们对二叉树的内在结构、特性,有了更全面的了解,希望通过本篇博客的阅读,你已经掌握了深入理解二叉树的关键知识。最后,感谢阅读!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96810.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D- vista:预训练的3D视觉和文本对齐Transformer

论文&#xff1a;https://arxiv.org/abs/2308.04352 代码: GitHub - 3d-vista/3D-VisTA: Official implementation of ICCV 2023 paper "3D-VisTA: Pre-trained Transformer for 3D Vision and Text Alignment" 摘要 三维视觉语言基础(3D- vl)是一个新兴领域&…

Jmeter参数化类型

1.参数在多个请求报文中出现&#xff0c;执行一次需要使用同一个参数--随机生成(随机变更) 2.参数在请求报文中出现&#xff0c;执行过程需要使用同一个参数(--固定参数) 3.参数从指定几个固定中随机获取一个 4.参数从本地文件中获取 5.参数在多个请求报文中出现&#xff0c;每…

C++笔记之左值与右值、右值引用

C笔记之左值与右值、右值引用 code review! 文章目录 C笔记之左值与右值、右值引用1.左值与右值2.右值引用——关于int&& r 10;3.右值引用——对比int&& r 10;和int& r 10;4.右值引用&#xff08;rvalue reference&#xff09;的概念 1.左值与右值 2.…

CNN卷积详解(三)

一、卷积层的计算 4 ∗ * ∗ 4的输入矩阵 I I I 和 3 ∗ * ∗ 3 的卷积核 K K K: 在步长&#xff08;stride&#xff09;为 1 时&#xff0c;输出的大小为 ( 4 − 3 1 ) ( 4 − 3 1) 计算公式&#xff1a; ● 输入图片矩阵 I I I 大小&#xff1a; w w w w ww ●…

i.MX6ULL开发板无法进入NFS挂载文件系统的解决办法

问题 使用NFS网络挂载文件系统后卡住无法进入系统。 解决办法 此处不详细讲述NFS安装流程 查看板卡挂载在/home/etc/rc.init下的自启动程序 进入到../../home/etc目录下&#xff0c;查看rc.init文件&#xff0c;首先从第一行排查&#xff0c;查看/home/etc/netcfg文件代码内容&…

【C++进阶】继承、多态的详解(多态篇)

【C进阶】继承、多态的详解&#xff08;多态篇&#xff09; 目录 【C进阶】继承、多态的详解&#xff08;多态篇&#xff09;多态的概念多态的定义及实现多态的构成条件&#xff08;重点&#xff09;虚函数虚函数的重写&#xff08;覆盖、一种接口继承&#xff09;C11 override…

qsort函数详解

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解qsort函数&#xff0c;如果你觉得我写的不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 文章目录 一. qsort函数参数详解1.数组首元素地址base2.数组的元素个数num和元素所占内存空间大小w…

java语言B/S架构云HIS医院信息系统源码【springboot】

医院云HIS全称为基于云计算的医疗卫生信息系统( Cloud- Based Healthcare Information System)&#xff0c;是运用云计算、大数据、物联网等新兴信息技术&#xff0c;按照现代医疗卫生管理要求&#xff0c;在一定区域范围内以数字化形式提供医疗卫生行业数据收集、存储、传递、…

对前端PWA应用的部分理解和基础Demo

一、什么是PWA应用&#xff1f; 1、PWA简介 ​ 渐进式Web应用&#xff08;Progressive Web App&#xff09;&#xff0c;简称PWA&#xff0c;是 Google 在 2015 年提出的一种使用web平台技术构建的应用程序&#xff0c;官方认为其核心在于Reliable&#xff08;可靠的&#xf…

数据结构--最短路径 Floyd算法

数据结构–最短路径 Floyd算法 F l o y d 算法&#xff1a;求出每⼀对顶点之间的最短路径 \color{red}Floyd算法&#xff1a;求出每⼀对顶点之间的最短路径 Floyd算法&#xff1a;求出每⼀对顶点之间的最短路径 使⽤动态规划思想&#xff0c;将问题的求解分为多个阶段 对于n个顶…

python入门篇02- 注释,变量,数据类型,运算符及条件控制语句

目录 1. 前言:2. python基础使用-> 2.1 注释的使用---> 2.1.1 单行注释示例: ---> 2.1.2 多行注释 -> 2.2 变量---> 2.2.1 整数类型/浮点类型/字符串类型---> 2.2.2 变量的简单使用---> 2.2.3 查看类型与类型转换---> 2.2.4 变量命名语法规则--->2.…

【设计模式——学习笔记】23种设计模式——策略模式Strategy(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入传统方案实现实现分析 介绍基本介绍登场角色 案例实现案例一类图实现 案例二类图实现问答 策略模式在JDK源码中的使用总结文章说明 案例引入 有各种鸭子&#xff0c;比如野鸭、北京鸭、水鸭等。 鸭子有各种行为&#xff0c;比如走路、叫、飞行等。不同鸭子的…

外网连接局域网的几种方式?快解析内网穿透安全便利吗?

外网连接局域网是一项网络连接中的关键技术&#xff0c;它能够让远程用户通过互联网访问内部局域网中的资源和服务。外网连接局域网为企业提供了更大的灵活性和便捷性&#xff0c;但也需要严格的安全措施来防止未经授权的访问。 外网连接局域网的几种方式 在将外网连接到局域…

【数据结构与算法】十大经典排序算法-归并排序

&#x1f31f;个人博客&#xff1a;www.hellocode.top &#x1f3f0;Java知识导航&#xff1a;Java-Navigate &#x1f525;CSDN&#xff1a;HelloCode. &#x1f31e;知乎&#xff1a;HelloCode &#x1f334;掘金&#xff1a;HelloCode ⚡如有问题&#xff0c;欢迎指正&#…

RocketMQ 5.0 架构解析:如何基于云原生架构支撑多元化场景

作者&#xff1a;隆基 本文将从技术角度了解 RocketMQ 的云原生架构&#xff0c;了解 RocketMQ 如何基于一套统一的架构支撑多元化的场景。 文章主要包含三部分内容。首先介绍 RocketMQ 5.0 的核心概念和架构概览&#xff1b;然后从集群角度出发&#xff0c;从宏观视角学习 R…

改进YOLO系列:4.添加ACmix注意力机制

添加ACmix注意力机制 1. ACmix注意力机制论文2. ACmix注意力机制原理3. ACmix注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. ACmix注意力机制论文 论文题目:On the Integration of Self-Attention and Convolution 论文链接:On the Integration…

【ROS】话题通信--从理论介绍到模型实现(C++)

1.简单介绍 话题通信是ROS中使用频率最高的一种通信模式&#xff0c;话题通信是基于发布订阅模式的&#xff0c;也即:一个节点发布消息&#xff0c;另一个节点订阅该消息。像雷达、摄像头、GPS… 等等一些传感器数据的采集&#xff0c;也都是使用了话题通信&#xff0c;换言之…

相机的位姿在地固坐标系ECEF和ENU坐标系的转换

在地球科学和导航领域&#xff0c;通常使用地心地固坐标系&#xff08;ECEF&#xff0c;Earth-Centered, Earth-Fixed&#xff09;和东北天坐标系&#xff08;ENU&#xff0c;East-North-Up&#xff09;来描述地球上的位置和姿态。如下图所示&#xff1a; ​地心地固坐标ecef和…

Python标准库-追踪异常,定位问题-traceback

在日常的编程过程中&#xff0c;我们经常会遇到各种错误和异常。而当程序发生异常时&#xff0c;了解如何有效地追踪异常信息并定位问题&#xff0c;是每个开发者必备的技能之一。 Python 提供了一个强大的工具&#xff0c;称为 Traceback&#xff0c;它可以帮助我们跟踪异常的…

java 工程管理系统源码+项目说明+功能描述+前后端分离 + 二次开发 em

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显…