我能“C”——数据的存储

 目录

  

1. 数据类型介绍

1.1 类型的基本归类:

2. 整形在内存中的存储 

2.1 原码、反码、补码

2.2 大小端介绍

2.3 练习  

3. 浮点型在内存中的存储 

3.1 一个例子  

3.2 浮点数存储规则  


1. 数据类型介绍

char         // 字符数据类型
short       // 短整型
int         // 整形
long         // 长整型
long long   // 更长的整形
float       // 单精度浮点数
double       // 双精度浮点数
//C 语言有没有字符串类型?
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。

1.1 类型的基本归类:

整形家族:
char
        unsigned char  //只放正数
        signed char   //放正数和负数
//字符存储和表示的时候本质上使用的是ASCII值,ASCII值是整数,字符类型也归类到整型家族
平时我们用的int相当于是signed int,可以省略掉signed。
short
        unsigned short [ int ]
        signed short [ int ]
int
        unsigned int
        signed int
long
        unsigned long [ int ]
        signed long [ int ]

 浮点数家族:

float
double

构造类型(自定义类型):

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

 指针类型

int * pi ;
char * pc ;
float* pf ;
void* pv ;

空类型: 

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
void test(...)//函数不需要返回值
{}
void test(void)//函数不需要参数
{}
void* p;//无具体类型指针

2. 整形在内存中的存储 

我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。 那接下来我们谈谈数据在所开辟内存中到底是如何存储的? 

比如: 

int a = 20 ;
int b = - 10 ;
我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:

2.1 原码、反码、补码

计算机中的整数有三种 2 进制表示方法,即原码、反码和补码。
三种表示方法均有 符号位 数值位 两部分,符号位都是用 0 表示 ,用 1 表示 ,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码 +1 就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理; 同时,加法和减法也可以统一处理(CPU 只有加法器 )此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:

我们可以看到对于 a b 分别存储的是补码。但是我们发现顺序有点 不对劲
这是又为什么?这又涉及到了大小端,往下看~

2.2 大小端介绍

 什么大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位 , ,保存在内存的高地
址中。

 

 

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit 。但是在 C 语言中除了 8 bit char 之外,还有 16 bit short 型,32 bit long 型(要看具体的编译器),另外,对于位数大于 8 位的处理器,例如 16 位或者 32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。
例如:一个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么 0x11 为高字节,0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM DSP 都为小端模式。有些 ARM 处理器还可以由硬件来选择是大端模式还是小端模式。

 百度2015年系统工程师笔试题:

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。( 10 分)
// 代码 1
#include <stdio.h>
int check_sys ()
{
int i = 1 ;
return ( * ( char * ) & i );
}
int main ()
{
int ret = check_sys ();
if ( ret == 1 )
{
printf ( " 小端 \n" );
}
else
{
printf ( " 大端 \n" );
}
return 0 ;
}
// 代码 2
int check_sys ()
{
union
{
int i ;
char c ;
} un ;
un . i = 1 ;
return un . c ;
}

2.3 练习  

1.
// 输出什么?
#include <stdio.h>
int main ()
{
char a = - 1 ;
//10000000000000000000000000000001
//11111111111111111111111111111110
//11111111111111111111111111111111
//11111111 - 截断
//整型提升 - 按照符号位提升
//11111111111111111111111111111111
//11111111111111111111111111111110 - 减1
//10000000000000000000000000000001
signed char b =- 1 ;
unsigned char c =- 1 ;
//1000000000000000000000000000001
//11111111111111111111111111111110
//11111111111111111111111111111111
//11111111 - 如果是无符号数高位直接补0
//00000000000000000000000011111111换成十进制为255
//补完0后 最高位的符号位是0 所以原、反、补码相同
printf ( "a=%d,b=%d,c=%d" , a , b , c );
return 0 ;
}

结构为a = -1 b = -1 c = 255

 

 

 

下面程序输出什么?

2.
#include <stdio.h>
int main ()
{
char a = - 128 ;
printf ( "%u\n" , a );
return 0 ;
}

//10000000000000000000000010000000 - 原码

//11111111111111111111111101111111 - 反码

//11111111111111111111111110000000 - 补码

//10000000 - a 截断

——>整型提升 补 1

//11111111111111111111111110000000

//%u打印 认为打印补码 对于无符号数来说 原反补相同

所以直接打印(转换成了十进制)打印了42亿多

3.
#include <stdio.h>
int main ()
{
char a = 128 ;
printf ( "%u\n" , a );
return 0 ;
}

 和上一道一模一样 因为截断那里一样 都是补 1

4.
int i = - 20 ;
unsigned   int   j = 10 ;
printf ( "%d\n" , i + j );
// 按照补码的形式进行运算,最后格式化成为有符号整数
详解:
//10000000 00000000 00000000 00010100 负20的原码
//11111111  11111111  11111111 11101011 负20的反码(符号位不变,其他取反)
//11111111 11111111 11111111 11101100 负20的补码(反码加1得到补码)
//00000000 00000000 00000000 00001010 10的原码(正数的原,反,补码相同)
//11111111 11111111 11111111 11110110 -20和10的补码相加
//(计算机的结果,是存在内存中的,是补码)
//11111111 11111111 11111111 11110101 (减1)
//10000000 00000000 00000000 00001010 (取反)得到了-10
5.
unsigned int i ;
for ( i = 9 ; i >= 0 ; i -- )
{
printf ( "%u\n" , i );
}

//-1的原 反 补
//10000000000000000000000000000001 原
//11111111111111111111111111111110 反
//11111111111111111111111111111111 补
//当循环i--到0,再减一次得到的是-1,而-1的补码是11111111111111111111111111111111,计算机会认为它是个很大的数,所以一直循环。

 %u打印无符号数

但是我换成%d,就可以打印-1了

6.
int main ()
{
char a [ 1000 ];
int i ;
for ( i = 0 ; i < 1000 ; i ++ )
  {
a [ i ] = - 1 - i ;
  }
printf ( "%d" , strlen ( a ));
return 0 ;
}
//-1 -2 -3 -4...-127...-998 -999 -1000
    //char -1 -2 -3...-128 127 126...3 2 1...0 -1 -2...-128 127
//strlen 求字符串长度,找的是\0, \0的ASCII码值是0 所以算char的长度算到0会停止所以128+127=255
结果会打印225
char 类型的取值范围是 -128~127

7.
#include <stdio.h>
unsigned char i = 0 ;
//0~255
int main ()
{
for ( i = 0 ; i <= 255 ; i ++ )
  {
printf ( "hello world\n" );
//十进制的256转换成二进制为1 00000000取后面八位不就是变成0了吗,所以i<=255这个条件恒成立所以死循环
  }
return 0 ;
}
所以结果为死循环打印hello world

3. 浮点型在内存中的存储 

常见的浮点数:

3.14159
1E10
浮点数家族包括: float double long double 类型。
浮点数表示的范围: float.h 中定义

3.1 一个例子  

浮点数存储的例子:
int main ()
{
int n = 9 ;
float * pFloat = ( float * ) & n ;
printf ( "n 的值为: %d\n" , n );
printf ( "*pFloat 的值为: %f\n" , * pFloat );
* pFloat = 9.0 ;
printf ( "num 的值为: %d\n" , n );
printf ( "*pFloat 的值为: %f\n" , * pFloat );
return 0 ;
}

n的值为:9——>是以整型的形式打印

*pFloat的值为:0.000000——>以浮点数的形式拿出来拿到的不是9.0,说明整型的存储形式和浮点数的存储形式有所差异

下面两个同理再次验证了整型的存储形式和浮点数的存储形式有所差异 。

输出的结果是什么呢?

3.2 浮点数存储规则  

num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准 IEEE (电气和电子工程协会) 754 ,任意一个二进制浮点数 V 可以表示成下面的形式:
  • (-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0V为正数;当S=1V为负数。
  • M表示有效数字,大于等于1,小于2
  • 2^E表示指数位。
  • 举例:5.5 用二进制表示形式 —— >

如图原理 5.5 转换成 101.1   科学计数法1.011*2^2

 

举例来说:
十进制的 5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2
那么,按照上面 V 的格式,可以得出 S=0 M=1.01 E=2
十进制的 -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么, S=1 M=1.01 E=2
IEEE 754 规定:
对于 32 位的浮点数,最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23 位为有效数字 M

对于64位的浮点数,最高的1位是符号位,接着的11位是指数E,剩下的23位为有效数字M。

IEEE 754 对有效数字 M 和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位 浮点数为例,留给M 只有 23 位, 将第一位的1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。下
首先, E 为一个无符号整数( unsigned int
这意味着,如果 E 8 位,它的取值范围为 0~255 ;如果 E 11 位,它的取值范围为 0~2047 。但是,我们 知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数 是127 ;对于 11 位的 E ,这个中间 数是1023 。比如, 2^10 E 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即 10001001。
然后,指数 E 从内存中取出还可以再分成三种情况:
E 不全为 0 或不全为 1
这时,浮点数就采用下面的规则表示,即指数 E 的计算值减去 127 (或 1023 ),得到真实值,再将
有效数字 M 前加上第一位的 1
比如:
0.5 1/2 )的二进制形式为 0.1 ,由于规定正数部分必须为 1 ,即将小数点右移 1 位,则为
1.0*2^(-1) ,其阶码为 -1+127=126 ,表示为
01111110 ,而尾数 1.0 去掉整数部分为 0 ,补齐 0 23 00000000000000000000000 ,则其二进
制表示形式为 :

 0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数 E 等于 1-127 (或者 1-1023 )即为真实值,
有效数字 M 不再加上第一位的 1 ,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0 ,以及接近于
0 的很小的数字。

 E全为1

这时,如果有效数字 M 全为 0 ,表示 ± 无穷大(正负取决于符号位 s );

好了,关于浮点数的表示规则,就说到这里。

解释前面的题目:

int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000
首先,将 0x00000009 拆分,得到第一位符号位 s=0 ,后面 8 位的指数 E=00000000
最后 23 位的有效数字 M=000 0000 0000 0000 0000 1001

9 -> 0000 0000 0000 0000 0000 0000 0000 1001  

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)  

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000 

再看例题的第二部分。

请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少?
首先,浮点数 9.0 等于二进制的 1001.0 ,即 1.001×2^3
9.0 -> 1001.0 -> ( - 1 ) ^01 . 0012 ^3 -> s = 0 , M = 1.001 , E = 3 + 127 = 130
那么,第一位的符号位 s=0 ,有效数字 M 等于 001 后面再加 20 0 ,凑满 23 位,指数 E 等于 3+127=130
10000010
所以,写成二进制形式,应该是 s+E+M ,即
0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,还原成十进制,正是 1091567616  

THE END

        这是今日份关于数据存储的一些分享,希望可以帮助到大家!如果有什么不足的地方也请家人们给小叶一些好的建议,我会不断优化文章的!那就让我们一起加油吧!哈哈哈哈哈

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97137.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习笔记230818---对于promise失败状态处理的重要性

问题描述&#xff1a; 在项目中经常会出现如上的问题&#xff0c;这是因为&#xff0c;用promise封装的接口或第三方组件方法&#xff0c;如果只对成功的状态做处理&#xff0c;就会造成页面出错&#xff0c;报error。 解决方法 then()的末尾加上.catch(()>{})对失败的状态…

matlab 点云最小二乘拟合空间直线(方法一)

目录 一、算法原理1、空间直线2、最小二乘法拟合二、代码实现三、结果展示四、可视化参考本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 1、空间直线 x

【Java 动态数据统计图】动态数据统计思路案例(动态,排序,数组)四(116)

需求&#xff1a;&#xff1a;前端根据后端的返回数据&#xff1a;画统计图&#xff1b; 1.动态获取地域数据以及数据中的平均值&#xff0c;按照平均值降序排序&#xff1b; 说明&#xff1a; X轴是动态的&#xff0c;有对应区域数据则展示&#xff1b; X轴 区域数据降序排序…

【NetCore】09-中间件

文章目录 中间件&#xff1a;掌控请求处理过程的关键1. 中间件1.1 中间件工作原理1.2 中间件核心对象 2.异常处理中间件:区分真异常和逻辑异常2.1 处理异常的方式2.1.1 日常错误处理--定义错误页的方法2.1.2 使用代理方法处理异常2.1.3 异常过滤器 IExceptionFilter2.1.4 特性过…

2023国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模…

图数据库_Neo4j学习cypher语言_常用函数_关系函数_字符串函数_聚合函数_数据库备份_数据库恢复---Neo4j图数据库工作笔记0008

然后再来看一些常用函数,和字符串函数,这里举个例子,然后其他的 类似 可以看到substring字符串截取函数 可以看到截取成功 聚合函数 这里用了一个count(n) 统计函数,可以看到效果 关系函数,我们用过就是id(r) 可以取出对应的r的id来这样..

【不带权重的TOPSIS模型详解】——数学建模

目录索引 定义&#xff1a;问题引入&#xff1a;不合理之处&#xff1a;进行修改&#xff1a; 指标分类&#xff1a;指标正向化&#xff1a;极小型指标正向化公式&#xff1a;中间型指标正向化公式&#xff1a;区间型指标正向化公式&#xff1a; 标准化处理(消去单位)&#xff…

【应用笔记】使用 CW32 实现电池备份(VBAT)功能

前言 电池备份&#xff08;VBAT&#xff09;功能的实现方法&#xff0c;一般是使用 MCU 自带的 VBAT 引脚&#xff0c;通过在该引脚连接钮扣电池&#xff0c;当系统电源因故掉电时&#xff0c;保持 MCU 内部备份寄存器内容和 RTC 时间信息不会丢失。 本文档介绍了如何基于 C…

PHP8的正则表达式-PHP8知识详解

在网页程序的时候&#xff0c;经常会有查找符合某些复杂规则的字符串的需求。正则表达式就是描述这些规则的工具。 正则表达式是把文本或者字符串按照一定的规范或模型表示的方法&#xff0c;经常用于文本的匹配操作。 例如&#xff1a;我们在填写手机号码的时候&#xff0c;…

java-JVM 类加载机制

JVM 类加载机制 JVM 类加载机制分为五个部分&#xff1a;加载&#xff0c;验证&#xff0c;准备&#xff0c;解析&#xff0c;初始化&#xff0c;下面我们就分别来看一下这五个过程。 1.1. 加载 加载是类加载过程中的一个阶段&#xff0c;这个阶段会在内存中生成一个代表这…

windows vscode使用opencv

1.windows vscode使用opencv 参考&#xff1a;https://blog.csdn.net/zhaiax672/article/details/88971248 https://zhuanlan.zhihu.com/p/402378383 https://blog.csdn.net/weixin_39488566/article/details/121297536 g -g .\hello_opencv.cpp -stdc14 -I E:\C-software\…

前端 -- 基础 网页、HTML、 WEB标准 扫盲详解

什么是网页 : 网页是构成网站的基本元素&#xff0c;它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 &#xff0c;常见以 .html 或 .htm 后缀结尾的文件&#xff0c; 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言&#xff0c…

java面试基础 -- 普通类 抽象类 接口

目录 抽象类语法 抽象类特性 普通类 & 抽象类 抽象类 & 接口 什么是接口 语法 接口方法 变量 接口特性 抽象类&接口的区别 抽象类语法 在Java中&#xff0c;一个类如果被 abstract 修饰称为抽象类&#xff0c;抽象类中被 abstract 修饰的方法称为抽象…

Android 场景Scene的使用

Scene 翻译过来是场景&#xff0c;开发者提供起始布局和结束布局&#xff0c;就可以实现布局之间的过渡动画。 具体可参考 使用过渡为布局变化添加动画效果 大白话&#xff0c;在 Activity 的各个页面之间切换&#xff0c;会带有过渡动画。 打个比方&#xff0c;使用起来类似…

vscode如何汉化

首先我们到vscode官网下载 链接如下&#xff1a; Visual Studio Code - Code Editing. Redefined 根据自己需要的版本下载就好 下载并且安装完毕之后 运行vscode 然后按快捷键 CTRLSHIFTX 打开安装扩展界面 搜索简体中文 安装就可以了 谢谢大家观看

Hadoop小结(上)

最近在学大模型的分布式训练和存储&#xff0c;自己的分布式相关基础比较薄弱&#xff0c;基于深度学习的一切架构皆来源于传统&#xff0c;我总结了之前大数据的分布式解决方案即Hadoop&#xff1a; Why Hadoop Hadoop 的作用非常简单&#xff0c;就是在多计算机集群环境中营…

【C++11新特性】lambda表达式

文章目录 1. lambda表达式概念2. lambda表达式语法3. lambda表达式应用 1. lambda表达式概念 lambda表达式是一个匿名函数&#xff0c;恰当使用lambda表达式可以让代码变得简洁&#xff0c;并且可以提高代码的可读性。 见见lambda表达式的使用 现在要对若干商品分别按照价格和…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术&#xff1f;需要解决哪些问题2、是什么&#xff1f;3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术&#xff1f;需要解决哪些问题 2、是什么&#xff1f; 官网&am…

Linux0.11内核源码解析-truncate.c

truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块&#xff0c;包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0&#xff0c;并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…

Windows10上VS2022单步调试FFmpeg 4.2源码

之前在 https://blog.csdn.net/fengbingchun/article/details/103735560 介绍过通过VS2017单步调试FFmpeg源码的方法&#xff0c;这里在Windows10上通过VS2022单步调试FFmpeg 4.2的方法&#xff1a;基于GitHub上ShiftMediaProject/FFmpeg项目&#xff0c;下面对编译过程进行说明…