驱动开发——字符设备

字符设备

Linux 将系统设备分为:字符设备、块设备、网络设备。

Linux系统框架

工作原理

	字符设备是 Linux 驱动中最基本的一类设备驱动,字符设备就是一个一个字节,
按照字节流进行读写操作的设备,读写数据是分先后顺序的。在Linux的世界里面一切皆文件,所有的硬件设备操作到应用层都会被抽象成文件
的操作。我们知道如果应用层要访问硬件设备,它必定要调用到硬件对应的驱动程序。1.在Linux文件系统中,每个文件都用一个struct inode结构体来描述,这个结构体里面记录了	这个文件的所有信息,例如:文件类型,访问权限等。

struct inode信息

2.在Linux操作系统中,每个驱动程序在应用层的/dev目录下都会有一个设备文件和它对应,并且该文件会有对应的主设备号和次设备号。
3.在Linux操作系统中,每个驱动程序都要分配一个主设备号,字符设备的设备号保存在struct cdev结构体中。struct cdev {struct kobject kobj;struct module *owner;const struct file_operations *ops;//接口函数集合struct list_head list;//内核链表dev_t dev;    //设备号unsigned int count;//次设备号个数};
4.在Linux操作系统中,每打开一次文件,Linux操作系统在VFS层都会分配一个struct file结构体来描述打开的这个文件。该结构体用于维护文件打开权限、文件指针偏移值、私有内存地址等信息。(strcut file有两个非常重要的字段:文件描述符和缓冲区)

在这里插入图片描述

字符驱动相关函数

注册

	内核共提供了三个函数来注册一组字符设备编号,这三个函数分别是 	
register_chrdev_region()、alloc_chrdev_region()和 register_chrdev()。

注意事项

1.使用register_chrdev注册字符设备,其内部申请struct cdev 结构,并调用cdev_add函数添加设备。
2.使用register_chrdev_region/alloc_chrdev_region注册字符设备,需要在外部事先定义struct cdev 结构,然后使用函数cdev_init初始化它,最后还需在外部调用cdev_add函数添加设备。
//比较老的内核注册的形式 早期的驱动
static inline int register_chrdev(unsigned int major, const char *name,const struct file_operations *fops)
功能:注册或者分配设备号,并注册fops到cdev结构体,如果major>0,功能为注册该主设备号,如果major=0,功能为动态分配主设备号。
参数:@major : 主设备号@name : 设备名称,执行 cat /proc/devices显示的名称@fops  : 文件系统的接口指针
返回值如果major>0   成功返回0,失败返回负的错误码如果major=0  成功返回主设备号,失败返回负的错误码
int register_chrdev_region(dev_t from, unsigned count, const char *name)
功能:注册一个范围()的设备号
参数:@from 设备号@count 注册的设备个数@name 设备的名字
返回值:成功返回0,失败返回错误码(负数)
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,const char *name)
功能:注册一个主设备号由内核动态分配,次设备号为baseminor~baseminor+count的设备驱动
参数:@dev: 用来获取设备号@baseminor:次设备号起始值@count: 次设备号个数@name: 设备名称     
返回值:成功返回0,失败返回错误码(负数)     
//注销
static inline void unregister_chrdev(unsigned int major, const char *name)
void cdev_init(struct cdev *cdev, const struct file_operations *fops)
功能:初始化cdev结构体
参数:@cdev cdev结构体地址@fops 操作字符设备的函数接口地址
返回值:无
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
功能:添加一个字符设备到操作系统
参数:@p cdev结构体地址@dev 设备号@count 次设备号个数
返回值:成功返回0,失败返回错误码(负数)
void cdev_del(struct cdev *p)
功能:从系统中删除一个字符设备
参数:@p cdev结构体地址
返回值:无
struct file_operations { struct module *owner;//拥有该结构的模块的指针,一般为THIS_MODULES loff_t (*llseek) (struct file *, loff_t, int);//用来修改文件当前的读写位置 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);//从设备中同步读取数据 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);//向设备发送数据ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);//初始化一个异步的读取操作 ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);//初始化一个异步的写入操作 int (*readdir) (struct file *, void *, filldir_t);//仅用于读取目录,对于设备文件,该字段为NULL unsigned int (*poll) (struct file *, struct poll_table_struct *); //轮询函数,判断目前是否可以进行非阻塞的读写或写入 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); //执行设备I/O控制命令 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); //不使用BLK文件系统,将使用此种函数指针代替ioctl long (*compat_ioctl) (struct file *, unsigned int, unsigned long); //在64位系统上,32位的ioctl调用将使用此函数指针代替 int (*mmap) (struct file *, struct vm_area_struct *); //用于请求将设备内存映射到进程地址空间int (*open) (struct inode *, struct file *); //打开 int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); //关闭 int (*fsync) (struct file *, struct dentry *, int datasync); //刷新待处理的数据 int (*aio_fsync) (struct kiocb *, int datasync); //异步刷新待处理的数据 int (*fasync) (int, struct file *, int); //通知设备FASYNC标志发生变化 int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *);ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); int (*setlease)(struct file *, long, struct file_lock **); };

实例

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>
#include <linux/cdev.h>/* 1. 确定主设备号 */
static int major;static int hello_open(struct inode *inode, struct file *file)
{printk("hello_open\n");return 0;
}static int hello2_open(struct inode *inode, struct file *file)
{printk("hello2_open\n");return 0;
}/* 2. 构造file_operations */
static struct file_operations hello_fops = {.owner = THIS_MODULE,.open  = hello_open,
};static struct file_operations hello2_fops = {.owner = THIS_MODULE,.open  = hello2_open,
};#define HELLO_CNT   2static struct cdev hello_cdev;
static struct cdev hello2_cdev;
static struct class *cls;static int hello_init(void)
{dev_t devid;/* 3. 告诉内核 */
#if 0major = register_chrdev(0, "hello", &hello_fops); /* (major,  0), (major, 1), ..., (major, 255)都对应hello_fops */
#elseif (major) {// 事先知道可用的主设备号,和起始次设备号devid = MKDEV(major, 0);register_chrdev_region(devid, HELLO_CNT, "hello");  /* (major,0~1) 对应 hello_fops, (major, 2~255)都不对应hello_fops */} else {// 事先不知道可用的主设备号,由内核动态分配alloc_chrdev_region(&devid, 0, HELLO_CNT, "hello"); /* (major,0~1) 对应 hello_fops, (major, 2~255)都不对应hello_fops */major = MAJOR(devid);                     }cdev_init(&hello_cdev, &hello_fops);cdev_add(&hello_cdev, devid, HELLO_CNT);devid = MKDEV(major, 2);register_chrdev_region(devid, 1, "hello2");cdev_init(&hello2_cdev, &hello2_fops);cdev_add(&hello2_cdev, devid, 1);#endifcls = class_create(THIS_MODULE, "hello");// 使用register_chrdev注册,下面的四个设备节点都将对应该设备驱动,都能调用hello_open// 使用 register_chrdev_region/alloc_chrdev_region (60/63)注册,设备节点/dev/hello0、/dev/hello1对应hello_fops设备驱动,调用hello_open打开// 使用 register_chrdev_region/alloc_chrdev_region (71)注册,设备节点/dev/hello2对应hello2_fops设备驱动,调用hello2_open打开// /dev/hello3节点未注册到设备驱动,无法打开设备。class_device_create(cls, NULL, MKDEV(major, 0), NULL, "hello0"); /* /dev/hello0 */class_device_create(cls, NULL, MKDEV(major, 1), NULL, "hello1"); /* /dev/hello1 */class_device_create(cls, NULL, MKDEV(major, 2), NULL, "hello2"); /* /dev/hello2 */class_device_create(cls, NULL, MKDEV(major, 3), NULL, "hello3"); /* /dev/hello3 */return 0;
}static void hello_exit(void)
{class_device_destroy(cls, MKDEV(major, 0));class_device_destroy(cls, MKDEV(major, 1));class_device_destroy(cls, MKDEV(major, 2));class_device_destroy(cls, MKDEV(major, 3));class_destroy(cls);cdev_del(&hello_cdev);unregister_chrdev_region(MKDEV(major, 0), HELLO_CNT);cdev_del(&hello2_cdev);unregister_chrdev_region(MKDEV(major, 2), 1);
}module_init(hello_init);
module_exit(hello_exit);MODULE_LICENSE("GPL");

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97388.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“Spring管理JavaBean的过程及Bean的生命周期“

目录 引言1.弹簧容器2. Bean的生命周期2.1 配置javaBean2.2. 解析Bean的定义2.3 检查是否需要添加自己的功能2.4 初始化2.5 实现Aware接口2.6 扩展2.7. 销毁 3. 单例模式和原型模式3.1. 单例模式3.2. 原型模式 4. 总结 引言 Spring框架是一个非常流行的Java应用程序框架&#…

Spring事件监听源码解析

spring事件监听机制离不开容器IOC特性提供的支持&#xff0c;比如容器会自动创建事件发布器&#xff0c;自动识别用户注册的监听器并进行管理&#xff0c;在特定的事件发布后会找到对应的事件监听器并对其监听方法进行回调。Spring帮助用户屏蔽了关于事件监听机制背后的很多细节…

Selenium的使用:WEB功能测试

Selenium是ThrougthWorks公司一个强大的开源WEB功能测试工具系列&#xff0c;本系统包括多款软件 Selenium语言简单&#xff0c;用(Command,target,value)三种元素组成一个行为&#xff0c;并且有协助录制脚本工具&#xff0c;但Selenese有一些严格的限制&#xff1a; …

FFmpeg5.0源码阅读——VideoToobox硬件解码

摘要&#xff1a;本文描述了FFmpeg中videotoobox解码器如何进行解码工作&#xff0c;如何将一个编码的码流解码为最终的裸流。   关键字&#xff1a;videotoobox,decoder,ffmpeg   VideoToolbox 是一个低级框架&#xff0c;提供对硬件编码器和解码器的直接访问。 它提供视频…

C语言:字符函数和字符串函数

往期文章 C语言&#xff1a;初识C语言C语言&#xff1a;分支语句和循环语句C语言&#xff1a;函数C语言&#xff1a;数组C语言&#xff1a;操作符详解C语言&#xff1a;指针详解C语言&#xff1a;结构体C语言&#xff1a;数据的存储 目录 往期文章前言1. 函数介绍1.1 strlen1.…

速通蓝桥杯嵌入式省一教程:(五)用按键和屏幕实现嵌入式交互系统

一个完整的嵌入式系统&#xff0c;包括任务执行部分和人机交互部分。在前四节中&#xff0c;我们已经讲解了LED、LCD和按键&#xff0c;用这三者就能够实现一个人机交互系统&#xff0c;也即搭建整个嵌入式系统的框架。在后续&#xff0c;只要将各个功能加入到这个交互系统中&a…

【数据库系统】--【2】DBMS架构

DBMS架构 01DBMS架构概述02 DBMS的物理架构03 DBMS的运行和数据架构DBMS的运行架构DBMS的数据架构PostgreSQL的体系结构RMDB的运行架构 04DBMS的逻辑和开发架构DBMS的层次结构DBMS的开发架构DBMS的代码架构 05小结 01DBMS架构概述 02 DBMS的物理架构 数据库系统的体系结构 数据…

pytorch 42 C#使用onnxruntime部署内置nms的yolov8模型

在进行目标检测部署时,通常需要自行编码实现对模型预测结果的解码及与预测结果的nms操作。所幸现在的各种部署框架对算子的支持更为灵活,可以在模型内实现预测结果的解码,但仍然需要自行编码实现对预测结果的nms操作。其实在onnx opset===11版本以后,其已支持将nms操作嵌入…

Maven - 统一构建规范:Maven 插件管理最佳实践

文章目录 Available Plugins开源项目中的使用插件介绍maven-jar-pluginmaven-assembly-pluginmaven-shade-pluginShade 插件 - 标签artifactSetrelocationsfilters 完整配置 Available Plugins https://maven.apache.org/plugins/index.html Maven 是一个开源的软件构建工具&…

使用yolov5进行安全帽检测填坑指南

参考项目 c​​​​​​​​​​​​​​GitHub - PeterH0323/Smart_Construction: Base on YOLOv5 Head Person Helmet Detection on Construction Sites&#xff0c;基于目标检测工地安全帽和禁入危险区域识别系统&#xff0c;&#x1f680;&#x1f606;附 YOLOv5 训练自己的…

visual studio 2022配置

前提&#xff1a;我linux c 开发 一直在使用vscode 更新了个版本突然代码中的查找所用引用和变量修改名称不能用了&#xff0c;尝试了重新配置clang vc都不行&#xff0c;估计是插件问题&#xff0c;一怒之下改用visual studio 2022 为了同步2个IDE之间的差别&#xff0c;目前…

知识继承概述

文章目录 知识继承第一章 知识继承概述1.背景介绍第一页 背景第二页 大模型训练成本示例第三页 知识继承的动机 2.知识继承的主要方法 第二章 基于知识蒸馏的知识继承预页 方法概览 1.知识蒸馏概述第一页 知识蒸馏概述第二页 知识蒸馏第三页 什么是知识第四页 知识蒸馏的核心目…

LeetCode_Java_2236. 判断根结点是否等于子结点之和

2236. 判断根结点是否等于子结点之和 给你一个 二叉树 的根结点 root&#xff0c;该二叉树由恰好 3 个结点组成&#xff1a;根结点、左子结点和右子结点。 如果根结点值等于两个子结点值之和&#xff0c;返回 true &#xff0c;否则返回 false 。 示例1 输入&#xff1a;roo…

每天一道leetcode:剑指 Offer 34. 二叉树中和为某一值的路径(中等图论深度优先遍历递归)

今日份题目&#xff1a; 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 示例1 输入&#xff1a;root [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSu…

SpringBoot中优雅的实现隐私数据脱敏(提供Gitee源码)

前言&#xff1a;在实际项目开发中&#xff0c;可能会对一些用户的隐私信息进行脱敏操作&#xff0c;传统的方式很多都是用replace方法进行手动替换&#xff0c;这样会由很多冗余的代码并且后续也不好维护&#xff0c;本期就讲解一下如何在SpringBoot中优雅的通过序列化的方式去…

深入解析 Axios Blob 的使用方法及技巧

在 Web 开发中&#xff0c;处理文件传输是一个常见的需求。Blob&#xff08;二进制对象&#xff09;是一种表示二进制数据的方式&#xff0c;常用于处理文件和多媒体数据。本文将介绍如何使用 Axios 和 Blob 来处理文件传输。 Axios Blob 概念 在开始之前&#xff0c;让我们先…

Redis中常见的缓存穿透、缓存击穿、缓存雪崩、缓存预热解决方案

文章目录 一、缓存穿透1. 什么是缓存穿透2. 解决方案2.1 无效的key存放到Redis2.2 引入布隆过滤器2.3 如何选择&#xff1a; 二、缓存击穿1. 什么是缓存击穿2. 解决方案 三、缓存雪崩1. 什么是缓存雪崩2. 解决方案2.1 均匀过期2.2 热点数据缓存永远不过期2.3 采取限流降级的策略…

[ MySQL ] — 常见函数的使用

目录 日期函数 current_date — 获取当前日期 current_time — 获取当前时间 current_timestamp — 获取当前时间戳 date — 获取参数的日期部分 ​编辑 date_add — 在日期或时间的基础上进行增加 date_sub — 在日期或时间的基础上进行减少 datediff — 计算两个日期相差…

mysql主从复制最简单环境搭建(一主一从)

提示&#xff1a;前面有相应的文章利用不同方式进行的主从配置 文章目录 前言一、概述二、主从复制的优点三、原理四、搭建五、主库配置六、从库配置七、测试 前言 一、概述 主从复制是指将主数据库的DDL 和 DML 操作通过二进制日志传到从库服务器中&#xff0c;然后在从库上…

听GPT 讲Prometheus源代码--rules

Prometheus的rules目录主要包含规则引擎和管理规则的文件: engine.go 该文件定义了规则引擎的接口和主要结构,包括Rule,Record,RuleGroup等。它提供了规则的加载、匹配、评估和结果记录的功能。 api.go 定义了用于管理和查询规则的RESTful API,包括获取、添加、删除规则等方法。…