人脸老化预测(Python)

本次项目的文件

main.py主程序如下

  1. 导入必要的库和模块:

    • 导入 TensorFlow 库以及自定义的 FaceAging 模块。
    • 导入操作系统库和参数解析库。
  2. 定义 str2bool 函数:

    • 自定义函数用于将字符串转换为布尔值。
  3. 创建命令行参数解析器:

    • 使用 argparse.ArgumentParser 创建解析器,设置命令行参数的相关信息,如是否训练、轮数、数据集名称等。
  4. 主函数 main(_) 入口:

    • 打印设置的参数。
    • 配置 TensorFlow 会话,设置 GPU 使用等。
  5. with tf.Session(config=config) as session 中:

    • 创建 FaceAging 模型实例,传入会话、训练模式标志、保存路径和数据集名称。
  6. 判断是否训练模式:

    • 如果是训练模式,根据参数决定是否使用预训练模型进行训练。
    • 如果不使用预训练模型,执行预训练步骤,并在预训练完成后开始正式训练。
    • 执行模型的训练方法,传入训练轮数等参数。
  7. 如果不是训练模式:

    • 进入测试模式,执行模型的自定义测试方法,传入测试图像目录。
  8. __name__ == '__main__' 中执行程序:

    • 执行命令行参数解析和主函数。
import tensorflow as tf
from FaceAging import FaceAging  # 导入自定义的 FaceAging 模块
from os import environ
import argparse# 设置环境变量,控制 TensorFlow 输出日志等级
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'# 自定义一个函数用于将字符串转换为布尔值
def str2bool(v):if v.lower() in ('yes', 'true', 't', 'y', '1'):return Trueelif v.lower() in ('no', 'false', 'f', 'n', '0'):return Falseelse:raise argparse.ArgumentTypeError('Boolean value expected.')# 创建命令行参数解析器
parser = argparse.ArgumentParser(description='CAAE')
parser.add_argument('--is_train', type=str2bool, default=True, help='是否进行训练')
parser.add_argument('--epoch', type=int, default=50, help='训练的轮数')
parser.add_argument('--dataset', type=str, default='UTKFace', help='存储在./data目录中的训练数据集名称')
parser.add_argument('--savedir', type=str, default='save', help='保存检查点、中间训练结果和摘要的目录')
parser.add_argument('--testdir', type=str, default='None', help='测试图像所在的目录')
parser.add_argument('--use_trained_model', type=str2bool, default=True, help='是否使用已有的模型进行训练')
parser.add_argument('--use_init_model', type=str2bool, default=True, help='如果找不到已有模型,是否从初始模型开始训练')
FLAGS = parser.parse_args()# 主函数入口
def main(_):# 打印设置参数import pprintpprint.pprint(FLAGS)# 配置 TensorFlow 会话config = tf.ConfigProto()config.gpu_options.allow_growth = Truewith tf.Session(config=config) as session:# 创建 FaceAging 模型实例model = FaceAging(session,  # TensorFlow 会话is_training=FLAGS.is_train,  # 是否为训练模式的标志save_dir=FLAGS.savedir,  # 保存检查点、样本和摘要的路径dataset_name=FLAGS.dataset  # 存储在 ./data 目录中的数据集名称)if FLAGS.is_train:print ('\n\t训练模式')if not FLAGS.use_trained_model:print ('\n\t预训练网络')model.train(num_epochs=10,  # 训练轮数use_trained_model=FLAGS.use_trained_model,use_init_model=FLAGS.use_init_model,weights=(0, 0, 0))print ('\n\t预训练完成!训练将开始。')model.train(num_epochs=FLAGS.epoch,  # 训练轮数use_trained_model=FLAGS.use_trained_model,use_init_model=FLAGS.use_init_model)else:print ('\n\t测试模式')model.custom_test(testing_samples_dir=FLAGS.testdir + '/*jpg')if __name__ == '__main__':# 在主程序中执行命令行解析和执行主函数tf.app.run()

 

2.FaceAging.py

主要流程

  1. 导入必要的库和模块:

    • 导入所需的Python库,如NumPy、TensorFlow等。
    • 导入自定义的操作(ops.py)。
  2. 定义 FaceAging 类:

    • 在初始化方法中,设置了模型的各种参数,例如输入图像大小、网络层参数、训练参数等,并创建了 TensorFlow 图的输入节点。
    • 定义了图的结构,包括编码器、生成器、判别器等。
    • 定义了损失函数,包括生成器、判别器、总变差(TV)等。
    • 收集了需要用于TensorBoard可视化的摘要信息。
  3. train 方法:

    • 从文件中加载训练数据集的文件名列表。
    • 定义了优化器和损失函数,然后进行模型的训练。
    • 在每个epoch中,随机选择一部分训练图像样本,计算并更新生成器和判别器的参数,输出训练进度等信息。
    • 保存模型的中间检查点,生成样本图像用于可视化,训练结束后保存最终模型。
  4. encoder 方法:

    • 实现了编码器结构,将输入图像转化为对应的噪声或特征。
  5. generator 方法:

    • 实现了生成器结构,将噪声特征、年龄标签和性别标签拼接,生成相应年龄段的人脸图像。
  6. discriminator_zdiscriminator_img 方法:

    • 实现了判别器结构,对输入的噪声特征或图像进行判别。
  7. save_checkpointload_checkpoint 方法:

    • 用于保存和加载训练过程中的模型检查点。
  8. sampletest 方法:

    • 生成一些样本图像以及将训练过程中的中间结果保存为图片。
  9. custom_test 方法:

    • 运行模型进行自定义测试,加载模型并生成特定人脸的年龄化效果。
from __future__ import division
import os
import time
from glob import glob
import tensorflow as tf
import numpy as np
from scipy.io import savemat
from ops import *class FaceAging(object):def __init__(self,session,  # TensorFlow sessionsize_image=128,  # size the input imagessize_kernel=5,  # size of the kernels in convolution and deconvolutionsize_batch=100,  # mini-batch size for training and testing, must be square of an integernum_input_channels=3,  # number of channels of input imagesnum_encoder_channels=64,  # number of channels of the first conv layer of encodernum_z_channels=50,  # number of channels of the layer z (noise or code)num_categories=10,  # number of categories (age segments) in the training datasetnum_gen_channels=1024,  # number of channels of the first deconv layer of generatorenable_tile_label=True,  # enable to tile the labeltile_ratio=1.0,  # ratio of the length between tiled label and zis_training=True,  # flag for training or testing modesave_dir='./save',  # path to save checkpoints, samples, and summarydataset_name='UTKFace'  # name of the dataset in the folder ./data):self.session = sessionself.image_value_range = (-1, 1)self.size_image = size_imageself.size_kernel = size_kernelself.size_batch = size_batchself.num_input_channels = num_input_channelsself.num_encoder_channels = num_encoder_channelsself.num_z_channels = num_z_channelsself.num_categories = num_categoriesself.num_gen_channels = num_gen_channelsself.enable_tile_label = enable_tile_labelself.tile_ratio = tile_ratioself.is_training = is_trainingself.save_dir = save_dirself.dataset_name = dataset_name# ************************************* input to graph ********************************************************self.input_image = tf.placeholder(tf.float32,[self.size_batch, self.size_image, self.size_image, self.num_input_channels],name='input_images')self.age = tf.placeholder(tf.float32,[self.size_batch, self.num_categories],name='age_labels')self.gender = tf.placeholder(tf.float32,[self.size_batch, 2],name='gender_labels')self.z_prior = tf.placeholder(tf.float32,[self.size_batch, self.num_z_channels],name='z_prior')# ************************************* build the graph *******************************************************print ('\n\tBuilding graph ...')# encoder: input image --> zself.z = self.encoder(image=self.input_image)# generator: z + label --> generated imageself.G = self.generator(z=self.z,y=self.age,gender=self.gender,enable_tile_label=self.enable_tile_label,tile_ratio=self.tile_ratio)# discriminator on zself.D_z, self.D_z_logits = self.discriminator_z(z=self.z,is_training=self.is_training)# discriminator on Gself.D_G, self.D_G_logits = self.discriminator_img(image=self.G,y=self.age,gender=self.gender,is_training=self.is_training)# discriminator on z_priorself.D_z_prior, self.D_z_prior_logits = self.discriminator_z(z=self.z_prior,is_training=self.is_training,reuse_variables=True)# discriminator on input imageself.D_input, self.D_input_logits = self.discriminator_img(image=self.input_image,y=self.age,gender=self.gender,is_training=self.is_training,reuse_variables=True)# ************************************* loss functions *******************************************************# loss function of encoder + generator#self.EG_loss = tf.nn.l2_loss(self.input_image - self.G) / self.size_batch  # L2 lossself.EG_loss = tf.reduce_mean(tf.abs(self.input_image - self.G))  # L1 loss# loss function of discriminator on zself.D_z_loss_prior = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_prior_logits, labels=tf.ones_like(self.D_z_prior_logits)))self.D_z_loss_z = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_logits, labels=tf.zeros_like(self.D_z_logits)))self.E_z_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_logits, labels=tf.ones_like(self.D_z_logits)))# loss function of discriminator on imageself.D_img_loss_input = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_input_logits, labels=tf.ones_like(self.D_input_logits)))self.D_img_loss_G = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_G_logits, labels=tf.zeros_like(self.D_G_logits)))self.G_img_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_G_logits, labels=tf.ones_like(self.D_G_logits)))# total variation to smooth the generated imagetv_y_size = self.size_imagetv_x_size = self.size_imageself.tv_loss = ((tf.nn.l2_loss(self.G[:, 1:, :, :] - self.G[:, :self.size_image - 1, :, :]) / tv_y_size) +(tf.nn.l2_loss(self.G[:, :, 1:, :] - self.G[:, :, :self.size_image - 1, :]) / tv_x_size)) / self.size_batch# *********************************** trainable variables ****************************************************trainable_variables = tf.trainable_variables()# variables of encoderself.E_variables = [var for var in trainable_variables if 'E_' in var.name]# variables of generatorself.G_variables = [var for var in trainable_variables if 'G_' in var.name]# variables of discriminator on zself.D_z_variables = [var for var in trainable_variables if 'D_z_' in var.name]# variables of discriminator on imageself.D_img_variables = [var for var in trainable_variables if 'D_img_' in var.name]# ************************************* collect the summary ***************************************self.z_summary = tf.summary.histogram('z', self.z)self.z_prior_summary = tf.summary.histogram('z_prior', self.z_prior)self.EG_loss_summary = tf.summary.scalar('EG_loss', self.EG_loss)self.D_z_loss_z_summary = tf.summary.scalar('D_z_loss_z', self.D_z_loss_z)self.D_z_loss_prior_summary = tf.summary.scalar('D_z_loss_prior', self.D_z_loss_prior)self.E_z_loss_summary = tf.summary.scalar('E_z_loss', self.E_z_loss)self.D_z_logits_summary = tf.summary.histogram('D_z_logits', self.D_z_logits)self.D_z_prior_logits_summary = tf.summary.histogram('D_z_prior_logits', self.D_z_prior_logits)self.D_img_loss_input_summary = tf.summary.scalar('D_img_loss_input', self.D_img_loss_input)self.D_img_loss_G_summary = tf.summary.scalar('D_img_loss_G', self.D_img_loss_G)self.G_img_loss_summary = tf.summary.scalar('G_img_loss', self.G_img_loss)self.D_G_logits_summary = tf.summary.histogram('D_G_logits', self.D_G_logits)self.D_input_logits_summary = tf.summary.histogram('D_input_logits', self.D_input_logits)# for saving the graph and variablesself.saver = tf.train.Saver(max_to_keep=2)def train(self,num_epochs=200,  # number of epochslearning_rate=0.0002,  # learning rate of optimizerbeta1=0.5,  # parameter for Adam optimizerdecay_rate=1.0,  # learning rate decay (0, 1], 1 means no decayenable_shuffle=True,  # enable shuffle of the datasetuse_trained_model=True,  # use the saved checkpoint to initialize the networkuse_init_model=True,  # use the init model to initialize the networkweigts=(0.0001, 0, 0)  # the weights of adversarial loss and TV loss):# *************************** load file names of images ******************************************************file_names = glob(os.path.join('./data', self.dataset_name, '*.jpg'))size_data = len(file_names)np.random.seed(seed=2017)if enable_shuffle:np.random.shuffle(file_names)# *********************************** optimizer **************************************************************# over all, there are three loss functions, weights may differ from the paper because of different datasetsself.loss_EG = self.EG_loss + weigts[0] * self.G_img_loss + weigts[1] * self.E_z_loss + weigts[2] * self.tv_loss # slightly increase the paramsself.loss_Dz = self.D_z_loss_prior + self.D_z_loss_zself.loss_Di = self.D_img_loss_input + self.D_img_loss_G# set learning rate decayself.EG_global_step = tf.Variable(0, trainable=False, name='global_step')EG_learning_rate = tf.train.exponential_decay(learning_rate=learning_rate,global_step=self.EG_global_step,decay_steps=size_data / self.size_batch * 2,decay_rate=decay_rate,staircase=True)# optimizer for encoder + generatorwith tf.variable_scope('opt', reuse=tf.AUTO_REUSE):self.EG_optimizer = tf.train.AdamOptimizer(learning_rate=EG_learning_rate,beta1=beta1).minimize(loss=self.loss_EG,global_step=self.EG_global_step,var_list=self.E_variables + self.G_variables)# optimizer for discriminator on zself.D_z_optimizer = tf.train.AdamOptimizer(learning_rate=EG_learning_rate,beta1=beta1).minimize(loss=self.loss_Dz,var_list=self.D_z_variables)# optimizer for discriminator on imageself.D_img_optimizer = tf.train.AdamOptimizer(learning_rate=EG_learning_rate,beta1=beta1).minimize(loss=self.loss_Di,var_list=self.D_img_variables)# *********************************** tensorboard *************************************************************# for visualization (TensorBoard): $ tensorboard --logdir path/to/log-directoryself.EG_learning_rate_summary = tf.summary.scalar('EG_learning_rate', EG_learning_rate)self.summary = tf.summary.merge([self.z_summary, self.z_prior_summary,self.D_z_loss_z_summary, self.D_z_loss_prior_summary,self.D_z_logits_summary, self.D_z_prior_logits_summary,self.EG_loss_summary, self.E_z_loss_summary,self.D_img_loss_input_summary, self.D_img_loss_G_summary,self.G_img_loss_summary, self.EG_learning_rate_summary,self.D_G_logits_summary, self.D_input_logits_summary])self.writer = tf.summary.FileWriter(os.path.join(self.save_dir, 'summary'), self.session.graph)# ************* get some random samples as testing data to visualize the learning process *********************sample_files = file_names[0:self.size_batch]file_names[0:self.size_batch] = []sample = [load_image(image_path=sample_file,image_size=self.size_image,image_value_range=self.image_value_range,is_gray=(self.num_input_channels == 1),) for sample_file in sample_files]if self.num_input_channels == 1:sample_images = np.array(sample).astype(np.float32)[:, :, :, None]else:sample_images = np.array(sample).astype(np.float32)sample_label_age = np.ones(shape=(len(sample_files), self.num_categories),dtype=np.float32) * self.image_value_range[0]sample_label_gender = np.ones(shape=(len(sample_files), 2),dtype=np.float32) * self.image_value_range[0]for i, label in enumerate(sample_files):label = int(str(sample_files[i]).split('/')[-1].split('_')[0])if 0 <= label <= 5:label = 0elif 6 <= label <= 10:label = 1elif 11 <= label <= 15:label = 2elif 16 <= label <= 20:label = 3elif 21 <= label <= 30:label = 4elif 31 <= label <= 40:label = 5elif 41 <= label <= 50:label = 6elif 51 <= label <= 60:label = 7elif 61 <= label <= 70:label = 8else:label = 9sample_label_age[i, label] = self.image_value_range[-1]gender = int(str(sample_files[i]).split('/')[-1].split('_')[1])sample_label_gender[i, gender] = self.image_value_range[-1]# ******************************************* training *******************************************************# initialize the graphtf.global_variables_initializer().run()# load check pointif use_trained_model:if self.load_checkpoint():print("\tSUCCESS ^_^")else:print("\tFAILED >_<!")# load init modelif use_init_model:if not os.path.exists('init_model/model-init.data-00000-of-00001'):from init_model.zip_opt import jointry:join('init_model/model_parts', 'init_model/model-init.data-00000-of-00001')except:raise Exception('Error joining files')self.load_checkpoint(model_path='init_model')# epoch iterationnum_batches = len(file_names) // self.size_batchfor epoch in range(num_epochs):if enable_shuffle:np.random.shuffle(file_names)for ind_batch in range(num_batches):start_time = time.time()# read batch images and labelsbatch_files = file_names[ind_batch*self.size_batch:(ind_batch+1)*self.size_batch]batch = [load_image(image_path=batch_file,image_size=self.size_image,image_value_range=self.image_value_range,is_gray=(self.num_input_channels == 1),) for batch_file in batch_files]if self.num_input_channels == 1:batch_images = np.array(batch).astype(np.float32)[:, :, :, None]else:batch_images = np.array(batch).astype(np.float32)batch_label_age = np.ones(shape=(len(batch_files), self.num_categories),dtype=np.float) * self.image_value_range[0]batch_label_gender = np.ones(shape=(len(batch_files), 2),dtype=np.float) * self.image_value_range[0]for i, label in enumerate(batch_files):label = int(str(batch_files[i]).split('/')[-1].split('_')[0])if 0 <= label <= 5:label = 0elif 6 <= label <= 10:label = 1elif 11 <= label <= 15:label = 2elif 16 <= label <= 20:label = 3elif 21 <= label <= 30:label = 4elif 31 <= label <= 40:label = 5elif 41 <= label <= 50:label = 6elif 51 <= label <= 60:label = 7elif 61 <= label <= 70:label = 8else:label = 9batch_label_age[i, label] = self.image_value_range[-1]gender = int(str(batch_files[i]).split('/')[-1].split('_')[1])batch_label_gender[i, gender] = self.image_value_range[-1]# prior distribution on the prior of zbatch_z_prior = np.random.uniform(self.image_value_range[0],self.image_value_range[-1],[self.size_batch, self.num_z_channels]).astype(np.float32)# update_, _, _, EG_err, Ez_err, Dz_err, Dzp_err, Gi_err, DiG_err, Di_err, TV = self.session.run(fetches = [self.EG_optimizer,self.D_z_optimizer,self.D_img_optimizer,self.EG_loss,self.E_z_loss,self.D_z_loss_z,self.D_z_loss_prior,self.G_img_loss,self.D_img_loss_G,self.D_img_loss_input,self.tv_loss],feed_dict={self.input_image: batch_images,self.age: batch_label_age,self.gender: batch_label_gender,self.z_prior: batch_z_prior})print("\nEpoch: [%3d/%3d] Batch: [%3d/%3d]\n\tEG_err=%.4f\tTV=%.4f" %(epoch+1, num_epochs, ind_batch+1, num_batches, EG_err, TV))print("\tEz=%.4f\tDz=%.4f\tDzp=%.4f" % (Ez_err, Dz_err, Dzp_err))print("\tGi=%.4f\tDi=%.4f\tDiG=%.4f" % (Gi_err, Di_err, DiG_err))# estimate left run timeelapse = time.time() - start_timetime_left = ((num_epochs - epoch - 1) * num_batches + (num_batches - ind_batch - 1)) * elapseprint("\tTime left: %02d:%02d:%02d" %(int(time_left / 3600), int(time_left % 3600 / 60), time_left % 60))# add to summarysummary = self.summary.eval(feed_dict={self.input_image: batch_images,self.age: batch_label_age,self.gender: batch_label_gender,self.z_prior: batch_z_prior})self.writer.add_summary(summary, self.EG_global_step.eval())# save sample images for each epochname = '{:02d}.png'.format(epoch+1)self.sample(sample_images, sample_label_age, sample_label_gender, name)self.test(sample_images, sample_label_gender, name)# save checkpoint for each 5 epochif np.mod(epoch, 5) == 4:self.save_checkpoint()# save the trained modelself.save_checkpoint()# close the summary writerself.writer.close()def encoder(self, image, reuse_variables=False):if reuse_variables:tf.get_variable_scope().reuse_variables()num_layers = int(np.log2(self.size_image)) - int(self.size_kernel / 2)current = image# conv layers with stride 2for i in range(num_layers):name = 'E_conv' + str(i)current = conv2d(input_map=current,num_output_channels=self.num_encoder_channels * (2 ** i),size_kernel=self.size_kernel,name=name)current = tf.nn.relu(current)# fully connection layername = 'E_fc'current = fc(input_vector=tf.reshape(current, [self.size_batch, -1]),num_output_length=self.num_z_channels,name=name)# outputreturn tf.nn.tanh(current)def generator(self, z, y, gender, reuse_variables=False, enable_tile_label=True, tile_ratio=1.0):if reuse_variables:tf.get_variable_scope().reuse_variables()num_layers = int(np.log2(self.size_image)) - int(self.size_kernel / 2)if enable_tile_label:duplicate = int(self.num_z_channels * tile_ratio / self.num_categories)else:duplicate = 1z = concat_label(z, y, duplicate=duplicate)if enable_tile_label:duplicate = int(self.num_z_channels * tile_ratio / 2)else:duplicate = 1z = concat_label(z, gender, duplicate=duplicate)size_mini_map = int(self.size_image / 2 ** num_layers)# fc layername = 'G_fc'current = fc(input_vector=z,num_output_length=self.num_gen_channels * size_mini_map * size_mini_map,name=name)# reshape to cube for deconvcurrent = tf.reshape(current, [-1, size_mini_map, size_mini_map, self.num_gen_channels])current = tf.nn.relu(current)# deconv layers with stride 2for i in range(num_layers):name = 'G_deconv' + str(i)current = deconv2d(input_map=current,output_shape=[self.size_batch,size_mini_map * 2 ** (i + 1),size_mini_map * 2 ** (i + 1),int(self.num_gen_channels / 2 ** (i + 1))],size_kernel=self.size_kernel,name=name)current = tf.nn.relu(current)name = 'G_deconv' + str(i+1)current = deconv2d(input_map=current,output_shape=[self.size_batch,self.size_image,self.size_image,int(self.num_gen_channels / 2 ** (i + 2))],size_kernel=self.size_kernel,stride=1,name=name)current = tf.nn.relu(current)name = 'G_deconv' + str(i + 2)current = deconv2d(input_map=current,output_shape=[self.size_batch,self.size_image,self.size_image,self.num_input_channels],size_kernel=self.size_kernel,stride=1,name=name)# outputreturn tf.nn.tanh(current)def discriminator_z(self, z, is_training=True, reuse_variables=False, num_hidden_layer_channels=(64, 32, 16), enable_bn=True):if reuse_variables:tf.get_variable_scope().reuse_variables()current = z# fully connection layerfor i in range(len(num_hidden_layer_channels)):name = 'D_z_fc' + str(i)current = fc(input_vector=current,num_output_length=num_hidden_layer_channels[i],name=name)if enable_bn:name = 'D_z_bn' + str(i)current = tf.contrib.layers.batch_norm(current,scale=False,is_training=is_training,scope=name,reuse=reuse_variables)current = tf.nn.relu(current)# output layername = 'D_z_fc' + str(i+1)current = fc(input_vector=current,num_output_length=1,name=name)return tf.nn.sigmoid(current), currentdef discriminator_img(self, image, y, gender, is_training=True, reuse_variables=False, num_hidden_layer_channels=(16, 32, 64, 128), enable_bn=True):if reuse_variables:tf.get_variable_scope().reuse_variables()num_layers = len(num_hidden_layer_channels)current = image# conv layers with stride 2for i in range(num_layers):name = 'D_img_conv' + str(i)current = conv2d(input_map=current,num_output_channels=num_hidden_layer_channels[i],size_kernel=self.size_kernel,name=name)if enable_bn:name = 'D_img_bn' + str(i)current = tf.contrib.layers.batch_norm(current,scale=False,is_training=is_training,scope=name,reuse=reuse_variables)current = tf.nn.relu(current)if i == 0:current = concat_label(current, y)current = concat_label(current, gender, int(self.num_categories / 2))# fully connection layername = 'D_img_fc1'current = fc(input_vector=tf.reshape(current, [self.size_batch, -1]),num_output_length=1024,name=name)current = lrelu(current)name = 'D_img_fc2'current = fc(input_vector=current,num_output_length=1,name=name)# outputreturn tf.nn.sigmoid(current), currentdef save_checkpoint(self):checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')if not os.path.exists(checkpoint_dir):os.makedirs(checkpoint_dir)self.saver.save(sess=self.session,save_path=os.path.join(checkpoint_dir, 'model'),global_step=self.EG_global_step.eval())def load_checkpoint(self, model_path=None):if model_path is None:print("\n\tLoading pre-trained model ...")checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')else:print("\n\tLoading init model ...")checkpoint_dir = model_pathcheckpoints = tf.train.get_checkpoint_state(checkpoint_dir)if checkpoints and checkpoints.model_checkpoint_path:checkpoints_name = os.path.basename(checkpoints.model_checkpoint_path)try:self.saver.restore(self.session, os.path.join(checkpoint_dir, checkpoints_name))return Trueexcept:return Falseelse:return Falsedef sample(self, images, labels, gender, name):sample_dir = os.path.join(self.save_dir, 'samples')if not os.path.exists(sample_dir):os.makedirs(sample_dir)z, G = self.session.run([self.z, self.G],feed_dict={self.input_image: images,self.age: labels,self.gender: gender})size_frame = int(np.sqrt(self.size_batch))save_batch_images(batch_images=G,save_path=os.path.join(sample_dir, name),image_value_range=self.image_value_range,size_frame=[size_frame, size_frame])def test(self, images, gender, name):test_dir = os.path.join(self.save_dir, 'test')if not os.path.exists(test_dir):os.makedirs(test_dir)images = images[:int(np.sqrt(self.size_batch)), :, :, :]gender = gender[:int(np.sqrt(self.size_batch)), :]size_sample = images.shape[0]labels = np.arange(size_sample)labels = np.repeat(labels, size_sample)query_labels = np.ones(shape=(size_sample ** 2, size_sample),dtype=np.float32) * self.image_value_range[0]for i in range(query_labels.shape[0]):query_labels[i, labels[i]] = self.image_value_range[-1]query_images = np.tile(images, [self.num_categories, 1, 1, 1])query_gender = np.tile(gender, [self.num_categories, 1])z, G = self.session.run([self.z, self.G],feed_dict={self.input_image: query_images,self.age: query_labels,self.gender: query_gender})save_batch_images(batch_images=query_images,save_path=os.path.join(test_dir, 'input.png'),image_value_range=self.image_value_range,size_frame=[size_sample, size_sample])save_batch_images(batch_images=G,save_path=os.path.join(test_dir, name),image_value_range=self.image_value_range,size_frame=[size_sample, size_sample])def custom_test(self, testing_samples_dir):if not self.load_checkpoint():print("\tFAILED >_<!")exit(0)else:print("\tSUCCESS ^_^")num_samples = int(np.sqrt(self.size_batch))file_names = glob(testing_samples_dir)if len(file_names) < num_samples:print ('The number of testing images is must larger than %d' % num_samples)exit(0)sample_files = file_names[0:num_samples]sample = [load_image(image_path=sample_file,image_size=self.size_image,image_value_range=self.image_value_range,is_gray=(self.num_input_channels == 1),) for sample_file in sample_files]if self.num_input_channels == 1:images = np.array(sample).astype(np.float32)[:, :, :, None]else:images = np.array(sample).astype(np.float32)gender_male = np.ones(shape=(num_samples, 2),dtype=np.float32) * self.image_value_range[0]gender_female = np.ones(shape=(num_samples, 2),dtype=np.float32) * self.image_value_range[0]for i in range(gender_male.shape[0]):gender_male[i, 0] = self.image_value_range[-1]gender_female[i, 1] = self.image_value_range[-1]self.test(images, gender_male, 'test_as_male.png')self.test(images, gender_female, 'test_as_female.png')print ('\n\tDone! Results are saved as %s\n' % os.path.join(self.save_dir, 'test', 'test_as_xxx.png'))

 3.data,一共23708张照片 

 4.对数据集感兴趣的可以关注

from __future__ import division
import os
import time
from glob import glob
import tensorflow as tf
import numpy as np
from scipy.io import savemat
from ops import *#https://mbd.pub/o/bread/ZJ2UmJpp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98422.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6种方法Word中的页眉横线如何删除

01 如何给Word添加页眉&#xff1f; 方法1&#xff1a; 打开Word文档&#xff0c;将鼠标放在Word顶部&#xff0c;双击鼠标&#xff0c;就可以进入页眉编辑状态&#xff0c;这时候&#xff0c;直接添加页眉内容就好了。 方法2&#xff1a; 在Word文档顶部菜单栏点击【插入】…

PostgreSQL空值的判断

PostgreSQL空值的判断 空值判断非空判断总结 空值判断 -- 查询为空的 is null,sql简写isnull select * from employees where manager_id isnull;select * from employees where manager_id is null;非空判断 -- 查询不为空的 is not null;sql简写notnull select * from empl…

​8th参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑出版传媒,2022.

​&#xff18;th参考文献&#xff1a;&#xff3b;&#xff18;&#xff3d;许少辉&#xff0e;乡村振兴战略下传统村落文化旅游设计&#xff3b;&#xff2d;&#xff3d;北京&#xff1a;中国建筑出版传媒&#xff0c;&#xff12;&#xff10;&#xff12;&#xff12;&…

设计模式——里氏替换原则

文章目录 里氏替换原则OO 中的继承性的思考和说明基本介绍一个程序引出的问题和思考解决方法 里氏替换原则 OO 中的继承性的思考和说明 继承包含这样一层含义&#xff1a;父类中凡是已经实现好的方法&#xff0c;实际上是在设定规范和契约&#xff0c;虽然它不强制要求所有的…

【JavaSE】面向对象之多态

文章目录 多态的概念多态实现条件重写向上转型和向下转型向上转型向下转型 避免在构造方法中调用重写的方法 多态的概念 通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。 多态实现条件 必须要…

微服务中间件--Nacos

Nacos 1. Nacos入门a.服务注册到Nacosb.Nacos服务分级存储模型c.NacosRule负载均衡d.服务实例的权重设置e.环境隔离 - namespacef.Nacos和Eureka的对比 2. Nacos配置管理a.统一配置管理b.配置热更新c.多环境配置共享 1. Nacos入门 Nacos是阿里巴巴的产品&#xff0c;现在是Spr…

3D与沉浸式技术,如何助力企业数字化转型?

说起3D&#xff0c;估计许多读者朋友会在第一时间想起《阿凡达》系列和《侏罗纪公园》系列电影大作。每一帧细节纤毫毕现的逼真画面&#xff0c;让观众几乎分不清虚拟与现实&#xff0c;完全沉浸在导演打造的视觉盛宴中。 事实上&#xff0c;除了大家所熟知的3D影视动画之外&am…

Linux Shell如果ping失败就重启网卡(详解)

直接上脚本 -------------------------------------------------------------------------- #vi /tmp/ping_check.sh #!/bin/bash IP="1.1.1.1" PacketLoss=`ping -c 4 -w 4 1.1.1.1 | grep packet loss | awk -F packet loss {print $1} | awk {print $NF}|se…

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…

零基础如何学习 Web 安全,如何让普通人快速入门网络安全?

前言 网络安全现在是朝阳行业&#xff0c;缺口是很大。不过网络安全行业就是需要技术很多的人达不到企业要求才导致人才缺口大 【一一帮助安全学习&#xff08;网络安全面试题学习路线视频教程工具&#xff09;一一】 初级的现在有很多的运维人员转网络安全&#xff0c;初级…

leetcode做题笔记92. 反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 思路一&#xff1a;头插法 struct ListNode *reverseBetween(struct ListNode *h…

vue3、react组件数据传值对比分析——父组件传递子组件,子组件传递父组件

文章目录 ⭐前言⭐react 组件传值实例&#x1f496;父组件传值给子组件&#xff08;props&#xff09;&#x1f496;子组件传递事件给父组件props绑定事件&#x1f496;父组件触发子组件的事件Ref ⭐vue3 组件传值实例&#x1f496; 父组件传递数据给子组件props&#x1f496; …

神经网络改进:注重空间变化,权重参数调整,正则化, 熵的简单理解

目录 神经网络改进&#xff1a;注重空间变化 将高纬空间映射到地位空间便于表示&#xff08;供给数据&#xff09; 将地位空间映射到高纬空间进行分类聚合&#xff08;达到可分状态&#xff08;K-means&#xff09;&#xff09; 神经网络改进&#xff1a;权重参数调整 自注…

PHP自己的框架实现操作成功失败跳转(完善篇四)

1、实现效果&#xff0c;操作成功后失败成功自动跳转 2、创建操作成功失败跳转方法CrlBase.php /**成功后跳转*跳转地址$url* 跳转显示信息$msg* 等待时间$wait* 是否自动跳转$jump*/protected function ok($urlNULL,$msg操作成功,$wait3,$jump1){$code1;include KJ_CORE./tp…

excel 核心快捷键用法

1、wps怎样只复制公示计算出来的数据 1.1、按下快捷键“CtrlC”&#xff0c;复制该单元格。 1.2、按下快捷键“ShiftCtrlV”&#xff0c;即“粘贴为数值”&#xff0c;即可只复制数字而不复制该单元格的公式 1.3、wps怎样只复制公示计算出来的数据_百度知道https://zhidao.baid…

C++ 的关键字(保留字)完整介绍

1. asm asm (指令字符串)&#xff1a;允许在 C 程序中嵌入汇编代码。 2. auto auto&#xff08;自动&#xff0c;automatic&#xff09;是存储类型标识符&#xff0c;表明变量"自动"具有本地范围&#xff0c;块范围的变量声明&#xff08;如for循环体内的变量声明…

GAN:对抗生成网络,前向传播和后巷传播的区别

目录 GAN&#xff1a;对抗生成网络 损失函数 判别器开始波动很大&#xff0c;先调整判别器 生成样本和真实样本的统一&#xff1a;真假难辨​编辑 文字专图片​编辑 头像转表情包​编辑 头像转3D​编辑 后向传播 1. 前向传播&#xff08;forward&#xff09; 2. 反向传播&…

windows权限维持—黄金白银票据隐藏用户远控RustDeskGotoHttp

windows权限维持—黄金白银票据&隐藏用户&远控&RustDesk&GotoHttp 1. 前置1.1. 初始问题1.1.1. 解决办法 2. 隐藏用户2.1. 工具原理2.2. 案例操作2.2.1. 单机添加用户2.2.1.1. 工具添加用户2.2.1.2. 工具查看隐藏用户2.2.1.3. 本地查看隐藏用户 2.2.2. 域内添加…

什么是Eureka?以及Eureka注册服务的搭建

导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…

WPF入门到精通:2.WPF常用控件及布局

WPF&#xff08;Windows Presentation Foundation&#xff09;是一个用于构建 Windows 应用程序的框架&#xff0c;它提供了丰富的控件和布局方式&#xff0c;帮助开发者快速构建出现代化的应用程序。 WPF常用控件 Button 控件 WPF 中最常用的控件之一。它由一个文本标签和一个…