算法每日双题精讲 —— 前缀和(【模板】一维前缀和,【模板】二维前缀和)

在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。

一、【模板】一维前缀和

题目描述

给定一个长度为 n n n 的整数数组 a a a,我们需要完成以下两个任务:

  1. 预处理数组,得到前缀和数组。
  2. 能够快速查询数组中任意区间 [ l , r ] [l, r] [l,r] 0 ≤ l ≤ r < n 0 \leq l \leq r < n 0lr<n)内所有元素的和。

算法原理

一维前缀和的核心思想是预先计算数组中每个位置之前所有元素的总和。设前缀和数组为 s s s,其中 s [ i ] s[i] s[i] 表示数组 a a a 中前 i i i 个元素的和( i i i 1 1 1 开始),那么有递推公式:
[s[i] = s[i - 1]+a[i - 1]]
这里 s [ 0 ] = 0 s[0]=0 s[0]=0,是为了方便处理边界情况。

当我们需要查询区间 [ l , r ] [l, r] [l,r] 的和时,根据前缀和的性质,该区间的和可以通过 s [ r + 1 ] − s [ l ] s[r + 1]-s[l] s[r+1]s[l] 快速得到。这是因为 s [ r + 1 ] s[r + 1] s[r+1] 包含了前 r + 1 r + 1 r+1 个元素的和, s [ l ] s[l] s[l] 包含了前 l l l 个元素的和,两者相减就得到了区间 [ l , r ] [l, r] [l,r] 的和。

在这里插入图片描述

在这里插入图片描述

C++ 代码实现

#include <iostream>
#include <vector>using namespace std;// 计算一维前缀和数组
vector<int> calculatePrefixSum(const vector<int>& a) {int n = a.size();vector<int> s(n + 1, 0);for (int i = 1; i <= n; ++i) {s[i] = s[i - 1] + a[i - 1];}return s;
}// 查询区间 [l, r] 的和
int querySum(const vector<int>& s, int l, int r) {return s[r + 1] - s[l];
}int main() {vector<int> a = {1, 2, 3, 4, 5};vector<int> s = calculatePrefixSum(a);int l = 1, r = 3;cout << "The sum of the interval [" << l << ", " << r << "] is: " << querySum(s, l, r) << endl;return 0;
}

复杂度分析

  • 时间复杂度:计算前缀和数组的时间复杂度为 O ( n ) O(n) O(n),因为需要遍历数组一次。每次查询区间和的时间复杂度为 O ( 1 ) O(1) O(1),这使得在多次查询的场景下,一维前缀和算法具有很高的效率。
  • 空间复杂度:需要额外的长度为 n + 1 n + 1 n+1 的数组来存储前缀和,因此空间复杂度为 O ( n ) O(n) O(n)

二、【模板】二维前缀和

题目描述

给定一个 m × n m \times n m×n 的二维整数矩阵 A A A,我们要完成以下任务:

  1. 预处理矩阵,得到二维前缀和矩阵。
  2. 能够快速查询矩阵中任意子矩阵 [ ( x 1 , y 1 ) , ( x 2 , y 2 ) ] [(x_1, y_1), (x_2, y_2)] [(x1,y1),(x2,y2)] 0 ≤ x 1 ≤ x 2 < m 0 \leq x_1 \leq x_2 < m 0x1x2<m 0 ≤ y 1 ≤ y 2 < n 0 \leq y_1 \leq y_2 < n 0y1y2<n)内所有元素的和。

算法原理

对于二维前缀和,我们定义 S [ i ] [ j ] S[i][j] S[i][j] 表示矩阵 A A A 中从左上角 ( 0 , 0 ) (0, 0) (0,0) 到右下角 ( i − 1 , j − 1 ) (i - 1, j - 1) (i1,j1) 这个子矩阵内所有元素的和( i i i j j j 1 1 1 开始)。其递推公式如下:
S [ i ] [ j ] = S [ i − 1 ] [ j ] + S [ i ] [ j − 1 ] − S [ i − 1 ] [ j − 1 ] + A [ i − 1 ] [ j − 1 ] S[i][j]=S[i - 1][j]+S[i][j - 1]-S[i - 1][j - 1]+A[i - 1][j - 1] S[i][j]=S[i1][j]+S[i][j1]S[i1][j1]+A[i1][j1]
这里减去 S [ i − 1 ] [ j − 1 ] S[i - 1][j - 1] S[i1][j1] 是为了避免重复计算。

当查询子矩阵 [ ( x 1 , y 1 ) , ( x 2 , y 2 ) ] [(x_1, y_1), (x_2, y_2)] [(x1,y1),(x2,y2)] 的和时,公式为:
s u m = S [ x 2 + 1 ] [ y 2 + 1 ] − S [ x 1 ] [ y 2 + 1 ] − S [ x 2 + 1 ] [ y 1 ] + S [ x 1 ] [ y 1 ] sum = S[x_2 + 1][y_2 + 1]-S[x_1][y_2 + 1]-S[x_2 + 1][y_1]+S[x_1][y_1] sum=S[x2+1][y2+1]S[x1][y2+1]S[x2+1][y1]+S[x1][y1]

在这里插入图片描述

在这里插入图片描述

C++ 代码实现

#include <iostream>
#include <vector>using namespace std;// 计算二维前缀和矩阵
vector<vector<int>> calculateTwoDPrefixSum(const vector<vector<int>>& A) {int m = A.size();int n = A[0].size();vector<vector<int>> S(m + 1, vector<int>(n + 1, 0));for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {S[i][j] = S[i - 1][j] + S[i][j - 1] - S[i - 1][j - 1] + A[i - 1][j - 1];}}return S;
}// 查询子矩阵 [(x1, y1), (x2, y2)] 的和
int queryTwoDSum(const vector<vector<int>>& S, int x1, int y1, int x2, int y2) {return S[x2 + 1][y2 + 1] - S[x1][y2 + 1] - S[x2 + 1][y1] + S[x1][y1];
}int main() {vector<vector<int>> A = {{1, 2, 3},{4, 5, 6},{7, 8, 9}};vector<vector<int>> S = calculateTwoDPrefixSum(A);int x1 = 0, y1 = 0, x2 = 1, y2 = 1;cout << "The sum of the sub - matrix [(" << x1 << ", " << y1 << "), (" << x2 << ", " << y2 << ")] is: "<< queryTwoDSum(S, x1, y1, x2, y2) << endl;return 0;
}

复杂度分析

  • 时间复杂度:计算二维前缀和矩阵需要两层嵌套循环遍历矩阵,时间复杂度为 O ( m × n ) O(m \times n) O(m×n)。每次查询子矩阵和的时间复杂度为 O ( 1 ) O(1) O(1),这使得在多次查询子矩阵和的场景下,二维前缀和算法非常高效。
  • 空间复杂度:需要额外的 ( m + 1 ) × ( n + 1 ) (m + 1)\times(n + 1) (m+1)×(n+1) 大小的矩阵来存储二维前缀和,因此空间复杂度为 O ( m × n ) O(m \times n) O(m×n)

通过以上的讲解和代码实现,我们可以看到前缀和算法在处理区间和与子矩阵和问题时的强大威力。它通过预处理的方式,将原本可能需要 O ( n ) O(n) O(n) O ( m × n ) O(m\times n) O(m×n) 时间复杂度的查询操作优化到了 O ( 1 ) O(1) O(1),在实际应用中能显著提升程序的性能。希望大家能够熟练掌握这两个模板,并在后续的算法学习和实践中灵活运用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9880.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VLLM性能调优

1. 抢占 显存不够的时候&#xff0c;某些request会被抢占。其KV cache被清除&#xff0c;腾退给其他request&#xff0c;下次调度到它&#xff0c;重新计算KV cache。 报这条消息&#xff0c;说明已被抢占&#xff1a; WARNING 05-09 00:49:33 scheduler.py:1057 Sequence gr…

知识管理系统塑造企业文化与学习型组织的变革之路

内容概要 知识管理系统&#xff08;Knowledge Management System, KMS&#xff09;是指组织内部为有效获取、存储、共享和应用知识而建立的结构和技术体系。这一系统不仅是信息技术的运用&#xff0c;更是推动企业文化和学习型组织发展的重要工具。在当今快速变化的商业环境中…

智能汽车网络安全威胁报告

近年来随着智能汽车技术的快速发展&#xff0c;针对智能汽车的攻击也逐渐从传统的针对单一车辆控制器的攻击转变为针对整车智能化服务的攻击&#xff0c;包括但不限于对远程控制应用程序的操控、云服务的渗透、智能座舱系统的破解以及对第三方应用和智能服务的攻击。随着WP.29 …

Python练习(2)

今日题单 吃鱼还是吃肉 PTA | 程序设计类实验辅助教学平台 降价提醒机器人PTA | 程序设计类实验辅助教学平台 幸运彩票 PTA | 程序设计类实验辅助教学平台 猜帽子游戏 PTA | 程序设计类实验辅助教学平台 谁管谁叫爹 PTA | 程序设计类实验辅助教学平台 就不告诉你 PTA | 程…

Ubuntu-手动安装 SBT

文章目录 前言Ubuntu-手动安装 SBT1. SBT是什么?1.1. SBT 的特点1.2. SBT 的基本功能1.3. SBT 的常用命令 2. 安装2.1. 下载2.2. 解压 sbt 二进制包2.3. 确认 sbt 可执行文件的位置2.4. 设置执行权限2.5. 创建符号链接2.6. 更新 PATH 环境变量2.7. 验证 sbt 安装 前言 如果您觉…

240. 搜索二维矩阵||

参考题解&#xff1a;https://leetcode.cn/problems/search-a-2d-matrix-ii/solutions/2361487/240-sou-suo-er-wei-ju-zhen-iitan-xin-qin-7mtf 将矩阵旋转45度&#xff0c;可以看作一个二叉搜索树。 假设以左下角元素为根结点&#xff0c; 当target比root大的时候&#xff…

Golang笔记——常用库context和runtime

大家好&#xff0c;这里是Good Note&#xff0c;关注 公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细介绍Golang的常用库context和runtime&#xff0c;包括库的基本概念和基本函数的使用等。 文章目录 contextcontext 包的基本概念主要类型和函数1. **…

Leetcode:350

1&#xff0c;题目 2&#xff0c;思路 首先判断那个短为什么呢因为我们用短的数组去挨个点名长的数组主要用map装长的数组max判断map里面有几个min数组的元素&#xff0c;list保存交集最后用数组返回list的内容 3&#xff0c;代码 import java.util.*;public class Leetcode…

《多线程基础之互斥锁》

【互斥锁导读】互斥锁是大家使用最多的线程同步手段&#xff0c;但仅仅知道怎么用还是不够的&#xff1f;比如&#xff1a;面试官问你"互斥锁是属于内核层还是应用层的同步保护机制&#xff1f;性能怎样&#xff1f;"&#xff0c;"频繁加解锁&#xff0c;会有什…

【Rust自学】15.0. 智能指针(序):什么是智能指针及Rust智能指针的特性

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 15.0.1 指针的基本概念 指针是一个变量在内存中包含的是一个地址&#xff0c;指向另一个数据。 Rust 中最常见的指针是引用&#xff0c…

Android Studio 正式版 10 周年回顾,承载 Androider 的峥嵘十年

Android Studio 1.0 宣发于 2014 年 12 月&#xff0c;而现在时间来到 2025 &#xff0c;不知不觉间 Android Studio 已经陪伴 Androider 走过十年历程。 Android Studio 10 周年&#xff0c;也代表着了我的职业生涯也超十年&#xff0c;现在回想起来依然觉得「唏嘘」&#xff…

Swing使用MVC模型架构

什么是MVC模式? MVC是一组英文的缩写,其全名是Model-View-Controller,也就是“模型-视图-控制器”这三个部分组成。这三个部分任意一个部分发生变化都会引起另外两个发生变化。三者之间的关系示意图如下所示: MVC分为三个部分,所以在MVC模型中将按照此三部分分成三…

1.Template Method 模式

模式定义 定义一个操作中的算法的骨架&#xff08;稳定&#xff09;&#xff0c;而将一些步骤延迟&#xff08;变化)到子类中。Template Method 使得子类可以不改变&#xff08;复用&#xff09;一个算法的结构即可重定义&#xff08;override 重写&#xff09;该算法的某些特…

arm-linux-gnueabihf安装

Linaro Releases windows下打开wsl2中的ubuntu&#xff0c;资源管理器中输入&#xff1a; \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录&#xff1a; /usr/local/arm&#xff0c;命令如下&#xff1a; …

【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状

目录 1. reshape 函数的用法 2. transpose 和 permute 函数的使用 4. squeeze 和 unsqueeze 函数的用法 5. 小节 个人主页&#xff1a;Icomi 专栏地址&#xff1a;PyTorch入门 在深度学习蓬勃发展的当下&#xff0c;PyTorch 是不可或缺的工具。它作为强大的深度学习框架&am…

百度热力图数据获取,原理,处理及论文应用5

目录 0、数据简介0、示例数据1、百度热力图数据日期如何选择1.1、其他实验数据的时间1.2、看日历1.3、看天气 2、百度热力图几天够研究&#xff1f;部分文章统计3、数据原理3.1.1 ** 这个比较重要&#xff0c;后面还会再次出现。核密度的值怎么理解&#xff1f;**3.1.2 Csv->…

论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅

1.论文链接&#xff1a;Modeling Linkage Disequilibrium and Performing Association Studies through Probabilistic Graphical Models: a Visiting Tour of Recent Advances 摘要&#xff1a; 本章对概率图模型&#xff08;PGMs&#xff09;的最新进展进行了深入的回顾&…

安装zsh并美化

0 Zsh 是一种功能强大的 shell&#xff0c;通常用于替代默认的 Bash shell。它为命令行提供了更多的功能&#xff0c;例如自动补全、强大的模式匹配和主题支持等。 Oh My Zsh 是用于管理 Zsh 配置的框架。 powerlevel10k是样式&#xff0c;通过p10k configure脚本可以调节自己…

最新-CentOS 7 基于1 Panel面板安装 JumpServer 堡垒机

CentOS 7 基于1 Panel面板安装 JumpServer 堡垒机 一、前言二、设备要求三、环境要求四、安装4.1 环境安装4.2 JumpServer安装4.3 访问JumpServerWeb端&#xff0c;进行登录 五、登录Web控制台 一、前言 JumpServer是广受欢迎的开源堡垒机。运维必备神器&#xff01;JumpServe…

跨境数据传输问题常见解决方式

在全球化经济的浪潮下&#xff0c;跨境数据传输已然成为企业日常运营的关键环节。随着数字贸易的蓬勃发展和跨国业务的持续扩张&#xff0c;企业在跨境数据处理方面遭遇了诸多棘手难题。那么&#xff0c;面对这些常见问题&#xff0c;企业该如何应对&#xff1f;镭速跨境数据传…