【项目实践】基于LSTM的一维数据扩展与预测

基于LSTM的一维数据拟合扩展

一、引(fei)言(hua)

我在做Sri Lanka生态系统服务价值计算时,中间遇到了一点小问题。从世界粮农组织(FAO)上获得Sri Lanka主要农作物产量和价格数据时,其中的主要作物Sorghum仅有2001-2006年的数据,而Millet只有2001-2005,2020-2021这样的间断数据。虽然说可以直接剔除这种过分缺失的数据,但这无疑会对生态因子的计算造成重大影响。所以我想要不要整个函数把他拟合一下,刚好Maize和Rice有2001-2021的完备数据,于是,这个文档就这样诞生了。


二、数据

数据来自FAO,考虑到可能有同学想要跟着尝试一下,这里给出用到的数据。

作物产量

作物价格

2.1 数据探查

我们读取数据,并进行简单的统计量查看。如果要进一步深入研究数据分布及可视化,可以看看我的这篇文章

import pandas as pdpath=r"YourPath"yield_=pd.read_csv(path+r"\yield.csv")
pp_=pd.read_csv(path+r"\Producer Prices.csv")
yield_.head()

在这里插入图片描述

需要用到的属性只有Item,Year,Unit,Value

所以我们做这样的处理:

yield_=yield_[["Item","Year","Unit","Value"]]

可以看到有些数据是从1961年开始的,太旧了就不用了,我们从2001年开始。

yield_=yield_[yield_["Year"]>2000]

同样,我们来看看pp_的情况:

pp_.head()

在这里插入图片描述

pp_=pp_[["Item","Year","Value","Element"]]
pp_=pp_[pp_["Year"]>2000]

实际上,在这个数据里,产量已经没有问题了。我们只需要做一个简单的处理:

yield_.groupby("Item").mean()["Value"]/10 #转为千克

在这里插入图片描述

便可拿到每种作物近二十年的平均产量。

好了现在大问题出现在价值上,我们从下往上看就知道了:

pp_.tail(10)

在这里插入图片描述

高粱只有2006年的,那有没有办法利用现成的数据将其扩展呢?

实际上,这类拟合问题有很多种解决方案,但是本问题涉及到时间,之前时间段的因子,以及可能的周期性,都会增加拟合的复杂性。所以,在这里我们采用LSTM来填充数据。


三、模型构建

在本小节,我们将比较传统一维CNN与RNN在结果上的异同。

一般做一维RNN时,可以指定一个时间窗口,比如用2006,2007,2008年的数据,推理2009年的数据,用2007,2008,2009年推理2010年。

我们现在要用之前处理好的pp_c数据中的玉米产量,来预测高粱产量。所以第一步就是将其转化为torch接受的格式。

别忘记导入模块:

import torch
import torch.nn as nn
from torch.nn import functional as F
x=pp_c[pp_c['Item']=="Maize (corn)"]['Value']
x=torch.FloatTensor(x)

之前写数据迭代器的时候,除了可以继承自torch.utils.data.DataLoader,也可以是任意的可迭代对象。这里我们可以简单的设置一个类:

# 设置迭代器
class MyDataSet(object):def __init__(self,seq,ws=6):# ws是滑动窗口大小self.ori=[i for i in seq[:ws]]self.label=[i for i in seq[ws:]]self.reset()self.ws=wsdef set(self,dpi):# 添加数据self.x.append(dpi)def reset(self):# 初始化self.x=self.ori[:]def get(self,idx):return self.x[idx:idx+self.ws],self.label[idx]def __len__(self):return len(self.x)

哦这边提一下,有两种方式,一种是用原始数据做预测,一种是用预测数据做预测,可能有点抽象,下面举个例子。

假设 A = [ a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ] A=[a1,a2,a3,a4,a5,a6] A=[a1,a2,a3,a4,a5,a6],时间窗口大小为3。

用原始数据做预测,那么输入值为: a 1 , a 2 , a 3 a1,a2,a3 a1,a2,a3,得到的结果将与 a 4 a4 a4做比较。下一轮输入为 a 2 , a 3 , a 4 a2,a3,a4 a2,a3,a4,得到的结果将与 a 5 a5 a5做比较。

而用预测的数据做预测,第一轮输入值为 a 1 , a 2 , a 3 a1,a2,a3 a1,a2,a3,得到的结果是 b 4 b4 b4,在与 a 4 a4 a4做比较后,下一轮的输入为 a 2 , a 3 , b 4 a2,a3,b4 a2,a3,b4,会出现如下情况:

输入数据为 b 4 , b 5 , b 6 b4,b5,b6 b4,b5,b6

我们现在举的例子是用预测的数据做预测。当然,最后也会给出一个用原始数据做预测的版本,那个版本相对简单。

ws=6 # 全局时间窗口
train_data=MyDataSet(x,ws)

网络的架构如下:

   
class Net3(nn.Module):def __init__(self,in_features=54,n_hidden1=128,n_hidden2=256,n_hidden3=512,out_features=7):super(Net3, self).__init__()self.flatten=nn.Flatten()self.hidden1=nn.Sequential(nn.Linear(in_features,n_hidden1,False),nn.ReLU())self.hidden2=nn.Sequential(nn.Linear(n_hidden1,n_hidden2),nn.ReLU())self.hidden3=nn.Sequential(nn.Linear(n_hidden2,n_hidden3),nn.ReLU())self.out=nn.Sequential(nn.Linear(n_hidden3,out_features))def forward(self,x):x=self.flatten(x)x=self.hidden2(self.hidden1(x))x=self.hidden3(x)return self.out(x)class CNN(nn.Module):def __init__(self, output_dim=1,ws=6):super(CNN, self).__init__()self.relu = nn.ReLU(inplace=True)self.conv1 = nn.Conv1d(ws, 64, 1)self.lr = nn.LeakyReLU(inplace=True)self.conv2 = nn.Conv1d(64, 128, 1)self.bn1, self.bn2 = nn.BatchNorm1d(64), nn.BatchNorm1d(128)self.bn3, self.bn4 = nn.BatchNorm1d(1024), nn.BatchNorm1d(128)self.flatten = nn.Flatten()self.lstm1 = nn.LSTM(128, 1024)self.lstm2 = nn.LSTM(1024, 256)self.lstm3=nn.LSTM(256,512)self.fc = nn.Linear(512, 512)self.fc4=nn.Linear(512,256)self.fc1 = nn.Linear(256, 64)self.fc3 = nn.Linear(64, output_dim)@staticmethoddef reS(x):return x.reshape(-1, x.shape[-1], x.shape[-2])def forward(self, x):x = self.reS(x)x = self.conv1(x) x = self.lr(x)x = self.conv2(x) x = self.lr(x)x = self.flatten(x)# LSTM部分x, h = self.lstm1(x)x, h = self.lstm2(x)x,h=self.lstm3(x)x, _ = hx = self.fc(x.reshape(-1, ))x = self.relu(x)x = self.fc4(x)x = self.relu(x)x = self.fc1(x)x = self.relu(x)x = self.fc3(x)return x

Net3主要是一维卷积,CNN加入了LSTM结构。至于名字,是随便取的…跟内容并无关系。


def Train(model,train_data,seed=1):device="cuda" if torch.cuda.is_available() else "cpu"model=model.to(device)Mloss=100000path=r"YourPath\%s.pth"%seed# 设置损失函数,这里使用的是均方误差损失criterion = nn.MSELoss()# 设置优化函数和学习率lroptimizer=torch.optim.Adam(model.parameters(),lr=1e-5,betas=(0.9,0.99),eps=1e-07,weight_decay=0)# 设置训练周期epochs =3000criterion=criterion.to(device)model.train()for epoch in range(epochs):total_loss=0for i in range(len(x)-ws):# 每次更新参数前都梯度归零和初始化seq,y_train=train_data.get(i) # 从我们的数据集中拿出数据seq,y_train=torch.FloatTensor(seq),torch.FloatTensor([y_train])seq=seq.unsqueeze(dim=0)seq,y_train=seq.to(device),y_train.to(device)optimizer.zero_grad()# 注意这里要对样本进行reshape,# 转换成conv1d的input size(batch size, channel, series length)y_pred = model(seq)loss = criterion(y_pred, y_train)loss.backward()train_data.set(y_pred.to("cpu").item()) # 再放入预测数据optimizer.step()total_loss+=losstrain_data.reset()if total_loss.tolist()<Mloss:Mloss=total_loss.tolist()torch.save(model.state_dict(),path)print("Saving")print(f'Epoch: {epoch+1:2} Mean Loss: {total_loss.tolist()/len(train_data):10.8f}')return model

正常训练就OK

d=CNN(ws=ws)
Train(d,train_data,4)

在这里插入图片描述

平均损失在10点左右,还有很大优化空间。当然我们这里只是举个非常简单的例子,就是个baseline

checkpoint=torch.load(r"YourPath\4.pth")
d.load_state_dict(checkpoint) # 加载最佳参数
d.to("cpu")

四、结果可视化

我们这里用到Pyechart进行可视化。

from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig
pre,ppre=[i.item() for i in x[:ws]],[]
# pre 是用原始数据做预测
# ppre 用预测数据做预测
for i in range(len(x)-ws+1):ppre.append(d(torch.FloatTensor(x[i:i+ws]).unsqueeze(dim=0)))pre.append(d(torch.FloatTensor(pre[-ws:]).unsqueeze(dim=0)).item())
l=Line()
l.add_xaxis([i for i in range(len(x))])
l.add_yaxis("Original Data",x.tolist())
l.add_yaxis("Pred Data(Using Raw Datas)",x[:ws].tolist()+[i.item() for i in ppre])
l.add_yaxis("Pred Data(Using Pred Datas)",pre)
l.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
l.set_global_opts(title_opts=opts.TitleOpts(title='LSTM CNN'))l.render_notebook()

根据时间窗口的不同,可以得到不同的结果。

ws=4

在这里插入图片描述

ws=5

在这里插入图片描述

ws=6

在这里插入图片描述

从结果上来看,时间窗口越大越好。但是这里我们只能到六了,再大就不礼貌了。(高粱只有六个节点的数据)。

至于验证,我们可以选Rice做验证:

x=torch.FloatTensor(pp_c[pp_c['Item']=="Rice"]['Value'].tolist())
pre,ppre=[i.item() for i in x[:ws]],[]
for i in range(len(x)-ws+1):ppre.append(d(torch.FloatTensor(x[i:i+ws]).unsqueeze(dim=0)))pre.append(d(torch.FloatTensor(pre[-ws:]).unsqueeze(dim=0)).item())
l=Line()
l.add_xaxis([i for i in range(len(x))])
l.add_yaxis("Original Data",x.tolist())
l.add_yaxis("Pred Data(Using Raw Datas)",x[:ws].tolist()+[i.item() for i in ppre])
l.add_yaxis("Pred Data(Using Pred Datas)",pre)
l.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
l.set_global_opts(title_opts=opts.TitleOpts(title='LSTM CNN'))l.render_notebook()

在这里插入图片描述

可以发现,用预测做预测的结果,基本上不会差太多,那也就意味着,我们可以对高粱进行预测啦!不过在这之前,我们可以看看用原始数据做训练的结果:

在这里插入图片描述

时间窗口一样为6,可以看到在黑线贴合的非常好,但是面对大量缺失的数据,精度就远不如用预测数据做预测的结果了。

此外,这是用CNN做的结果

在这里插入图片描述

我们可以发现LSTM的波动要比CNN好,CNN后面死水一潭,应该是梯度消失导致的,前面信息没有了,后面信息又是自个构造的,这就导致了到后面变成了线性情况。

那么最后的最后,就是预测高粱产量了:

pre_data=pp_c[pp_c['Item']=='Sorghum']['Value'].tolist()
l=pre_data[:]
for i in range(len(x)-ws+1):l.append(d(torch.FloatTensor(l[-ws:]).unsqueeze(dim=0)).item())
L=Line()
L.add_xaxis([i for i in range(len(x))])
L.add_yaxis("Pred",l)
L.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
L.set_global_opts(title_opts=opts.TitleOpts(title='sorghum production forecasts'))L.render_notebook()
l.to_csv("path")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常用的Selenium基础使用模板和简单封装

前言 近来又用上了 Selneium &#xff0c;因为反复用到&#xff0c;所以在这里将一些常用的方法封装起来&#xff0c;方便后续的使用。 在这篇文章中&#xff0c;我们将探讨 Selenium 的基础模板和基础封装&#xff0c;以便更好地理解 Selenium 的使用方法。 在Selenium的使…

MyBatisPlus入门

入门&#xff1a; 依赖&#xff1a; <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>{version}</version> </dependency> 配置&#xff1a; ## 去除logo …

无涯教程-PHP - 标量函数声明

在PHP 7中&#xff0c;引入了一个新函数&#xff0c;即标量类型声明。标量类型声明有两个选项- Coercive - 强制性是默认模式。Strict - 严格模式必须明确提示。 可以使用上述模式强制执行以下类型的函数参数- intfloatbooleanstringinterfacesarraycallable 强制模…

opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

前面我们已经了解了Harris函数来进行角点检测&#xff0c;因为角点的特性&#xff0c;这些角点在图像旋转的时候也可以被检测到。但是&#xff0c;如果我们放大或缩小图像时&#xff0c;就可能会丢失图像的某些部分&#xff0c;甚至有可能增加角点的质量。这种损失的现象需要一…

Revit 3D高效处理:cad exchanger sdk 3.21 Crack

3D 格式概述&#xff1a;Revit Revit 已成为寻求高效、准确的建筑信息建模的专业人士的首选解决方案。在这篇引人入胜的功能概述中了解 Revit 的特性和影响。 什么是Revit&#xff1f; Autodesk Revit 是一款流行的 CAD 软件&#xff0c;重点关注 BIM&#xff0c;被建筑师、工…

C++入门:引用是什么

目录 1.引用的概念 2.引用的特征 3.常引用 4.引用使用场景 5.传值&#xff0c;传引用效率比较 6.引用与指针的区别 1.引用的概念 引用不是新定义一个变量&#xff0c;而是给已存在变量取了一个别名&#xff0c;编译器不会为引用变量开辟内存空 间&#xff0c;它和它引用…

AUTBUS全球首发,东土与您相约工博会

2023年中国国际工业博览会将于9月19日至9月23日在上海盛大举办。作为工博会重点参展企业之一&#xff0c;东土科技将重磅亮相6.1号馆工业自动化展&#xff08;展位号&#xff1a;6.1H-D137&#xff09;。 值得一提的是&#xff0c;AUTBUS 国际标准作为全球第一个基于时间敏感网…

LLMs 缩放法则和计算最优模型Scaling laws and compute-optimal models

在上一个视频中&#xff0c;您探讨了训练大型语言模型的计算挑战。在这里&#xff0c;您将了解关于模型大小、训练、配置和性能之间关系的研究&#xff0c;以确定模型需要多大。请记住&#xff0c;预训练期间的目标是最大化模型的学习目标性能&#xff0c;即在预测令牌时最小化…

LeetCode--HOT100题(38)

目录 题目描述&#xff1a;226. 翻转二叉树&#xff08;简单&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;226. 翻转二叉树&#xff08;简单&#xff09; 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 LeetCode做题链…

pytorch 入门1-tensor 广播 view reshape

tensor 的四则运算broadcast import torch import numpy as np # 张量tensor 随机初始化 x torch.rand(4,3) print(x) y torch.randn(4,3) print(y)# 初始化全零 张量 a torch.zeros((4,4),dtypetorch.long) print(a) #初始化全一 张量 b torch.ones(4,4) print(b) c tor…

多客户企业选择拥有哪些功能的CRM系统?

管理海量客户信息对于每一家企业都是巨大的挑战。粗放式的管理客户资料是对资源的一种浪费&#xff0c;让很多有意向的高价值客户流失。客户比较多&#xff0c;有什么CRM系统推荐吗&#xff1f;帮助企业轻松地跟进客户&#xff0c;提高销售效率&#xff1f; 1.易于使用 首先是…

macOS Ventura 13.5.1(22G90)发布(附黑/白苹果系统镜像地址)

系统镜像下载&#xff1a;百度&#xff1a;黑果魏叔 系统介绍 黑果魏叔 8 月 18 日消息&#xff0c;苹果今日向 Mac 电脑用户推送了 macOS 13.5.1 更新&#xff08;内部版本号&#xff1a;22G90&#xff09;&#xff0c;本次更新距离上次发布隔了 24 天。 本次更新重点修复了…

Docker部署MongoDB 5.0.5

1、查看目录 rootwielun:~# tree mongo mongo ├── conf │ └── mongod.conf ├── data ├── docker-compose.yml └── logrootwielun:~# cd mongo rootwielun:~/mongo# chmod 777 log2、配置docker-compose.yml rootwielun:~/mongo# cat docker-compose.yml ve…

【ES6】—【必备知识】—扩展运算符与rest参数

一、扩展运算符 1. 定义&#xff1a;把数组或类数组展开成用逗号隔开的值 function foo(a,b,c) {console.log(a,b,c) } let arr [1,2,3] foo(...arr)2. 把两个数组合并 2-1. ES5 实现 let arr1 [1,2,3] let arr2 [4,5,6] Array.prototype.push.apply(arr1, arr2) consol…

多线程+隧道代理:提升爬虫速度

在进行大规模数据爬取时&#xff0c;爬虫速度往往是一个关键问题。本文将介绍一个提升爬虫速度的秘密武器&#xff1a;多线程隧道代理。通过合理地利用多线程技术和使用隧道代理&#xff0c;我们可以显著提高爬虫的效率和稳定性。本文将为你提供详细的解决方案和实际操作价值&a…

文心一言 VS 讯飞星火 VS chatgpt (80)-- 算法导论7.4 5题

五、如果用go语言&#xff0c;当输入数据已经“几乎有序”时&#xff0c;插入排序速度很快。在实际应用中&#xff0c;我们可以利用这一特点来提高快速排序的速度。当对一个长度小于 k 的子数组调用快速排序时&#xff0c;让它不做任何排序就返回。当上层的快速排序调用返回后&…

国产精品:讯飞星火最新大模型V2.0

大家好&#xff0c;我是爱编程的喵喵。双985硕士毕业&#xff0c;现担任全栈工程师一职&#xff0c;热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…

ethers.js2:provider提供商

1、Provider类 Provider类是对以太坊网络连接的抽象&#xff0c;为标准以太坊节点功能提供简洁、一致的接口。在ethers中&#xff0c;Provider不接触用户私钥&#xff0c;只能读取链上信息&#xff0c;不能写入&#xff0c;这一点比web3.js要安全。 除了之前介绍的默认提供者d…

VMware 使用U盘进入PE系统,下划线光标闪烁

一、前言 vmware虚拟机各种原因崩溃&#xff0c;然后又没有快照&#xff0c;怎么办&#xff1f; 或者 密码忘记了无法开机&#xff0c;这时候就想到使用PE了。 二、分析 但是使用U盘进入PE的时候&#xff0c;遇到了各种问题&#xff1a; 加载U盘修改启动顺序启动后出现下划线…

介绍Server-Sent Events,以及使用,超级简单!

一、SSE 的本质 严格地说&#xff0c;HTTP 协议无法做到服务器主动推送信息。但是&#xff0c;有一种变通方法&#xff0c;就是服务器向客户端声明&#xff0c;接下来要发送的是流信息&#xff08;streaming&#xff09;。 也就是说&#xff0c;发送的不是一次性的数据包&…