AMBA总线协议(8)——AHB(六):分割传输

一、前言

        在之前的文章中,我们重点介绍了AHB传输的仲裁,首先介绍了仲裁相关的信号,然后分别介绍了请求总线访问,授权总线访问,猝发提前终止,锁定传输和默认主机总线,在本文中我们将继续介绍AHB的分割传输。

二、AHB分割传输

        分割传输通过根据从机的响应操作来分离(或者分块)主机操作,以给从机提供地址和合适的数据,提高了总线的总体使用率。
        当传输产生时,如果从机认为传输的执行将占据大量的时钟周期,那么从机能够决定发出一个 SPLIT 响应。该信号提示仲裁器尝试这次传输的主机不应该被授予访问总线,直到从机表示它准备好了完成传输时。因此,仲裁器负责监视响应信号,并且在内部屏蔽已经是 SPLIT 传输主机的任何请求。
        在传输的地址周期,仲裁器在 HMASTER[3:0] 产生一个标记,或者总线主机序号,以表示正在执行传输的主机。任何一个发出 SPLIT 响应的从机必须表示它有能力完成这个传输,并且通过记录 HMASTER[3:0] 信号上的主机序号来实现。
        之后,当从机能够完成传输时,它就根据主机序号在在从机到主机的 HSPLITx[15:0]信号上生效适当的位。然后仲裁器使用这个信息来解除来自主机请求信号的屏蔽,并且主机将被及时授予访问总线以重试传输。仲裁器在每个时钟周期采样 HSPLITx 总线,因此,从机只需要生效适当的位一个周期,以便仲裁器能够识别。
如果系统中有多个具有 SPLIT 能力的从机,那么每个从机的 HSPLITx 总线可以逻辑或在一起以提供给仲裁器单个 HSPLIT 总线。大多数系统中并没有用到最大 16 个总线主机的能力,因此,仲裁器仅要求一个位数和总主机数量一样的 HSPLIT 总线。但是,建议所有具有 SPLIT 能力的从机被设计成支持高达16个主机。

1、分割传输顺序

SPLIT 传输的基本步骤如下:
        (1) 主机以和其他传输一样的方式发起传输并发出地址和控制信息;
        (2) 如果从机能够立刻提供数据,那么它可以马上提供数据。如果从机确认获取数据可能会占据较多的周期,那么它给出一个 SPLIT 传输响应;每次传输中仲裁器广播一个序号或者标记,表示哪个主机正在使用总线。从机必须记录该序号,以便用来在之后的一段时间重新发起传输;
        (3) 仲裁器授予其他主机使用总线,并且 SPLIT 响应的动作允许主机移交总线。如果所有其他主机也接收到一个 SPLIT 响应,那么默认主机将被授予总线;
        (4) 当从机准备完成传输,那么它生效 HSPLITx 总线中的适当位给仲裁器以指示哪个主机应该被重新授予访问总线;
        (5) 仲裁器每个时钟周期监视 HSPLITx 信号,并且当 HSPLITx 中的任何一位被生效,仲裁器将恢复对应主机的优先级;
        (6) 最后仲裁器将授予(SPLIT 的)主机总线,因此主机能重新尝试传输。如果一个优先级更高的主机正在使用总线的话,这可能不会立刻发生;
        (7) 当传输终于开始后从机以一个 OKAY 传输响应来结束(传输)。

2、多个分割传输

        总线协议只允许每个总线主机有一个未完成的处理。如果任何主机模块能够处理多于一个未完成的处理,那么它需要为能够处理的每个未完成处理设置一个额外的请求和授予信号。在协议级上一个信号模块可以表现为许多不同总线主机,每个主机只能有一个未完成的处理。
        然而,可能一个有 SPLIT 能力的从机会接收比它能并发处理的(传输)还要多的传输请求。如果这种情况发生,那么从机可以不用记录对应传输的地址和控制信息,而仅需要记录主机序号就发出 SPLIT 响应。之后从机可以通过生效  HSPLITx 总线中适当的位给之前被给出SPLIT 响应的所有主机来表示它能处理另外一个传输,但是从机没有记录地址和控制信息。之后仲裁器能够重新授予这些主机访问总线,并且它们将重试传输,给出从机要求的地址和控制信息。这表示一个主机可以在它最终完成它要求的传输之前被多次授予总线。

3、预防死锁

        SPLIT 和 RETRY 传输响应都必须在使用中注意预防总线死锁。单个传输决不会锁定AHB,因为每个从机必须被设计成能在预先确定的周期数内完成传输。但是,如果多个不同主机试图访问同一个从机,从机发出 SPLIT 或者 RETRY 响应以表示从机不能处理,那么就有可能发生死锁。

(1)分割传输

        从机可以发出 SPLIT 传输响应,通过确保从机能够承受系统中每个主机(最多 16 个)的单个请求来预防死锁。从机并不需要存储每个主机的地址和控制信息,它只需要简单的记录传输请求已经被处理和 SPLIT 响应已经发出的事实即可。最后所有主机将处在低优先级,然后从机可以有次序的来处理这些请求,指示仲裁器正在服务于哪个请求,因而确保了所有请求最终都被服务。

        当从机有许多未完成的请求时,它可能以任何顺序(随机的)来选择处理这些请求,尽管从机需要注意锁定传输必须在任何其他传输继续之前完成。

        从机使用 SPLIT 响应而不用锁存地址和控制信息显得非常合法(合适)。从机仅需要记录特定主机做出的传输尝试并且稍后的时间段从机通过指示自己已经准备好完成传输就能获取地址和控制信息。主机将被授予总线并将重新广播传输,允许从机锁存地址和控制信息,并且立刻应答数据,或者发出另外一个 SPLIT 响应(如果还需要额外的一些周期的话)。

        理想情况下,从机不应该有多于它能支持的未完成传输,但是要求支持这种机制以防止总线死锁。

(2)重试传输

        发出 SPLIT 响应的从机一次只能被一个主机访问。在总线协议中并没有强制,而在系统体系结构中应该确保这一点。大多数情况下,发出 RETRY 响应的从机必须是一次只能被一个主机访问的外设,因此这会在一些更高级协议中得到保证。
        硬件保护和多主机访问 RETRY(响应)的从机相违背并不是协议中的要求,但是可能会在下文描述的设计中得到执行。仅有的总线级要求是从机必须在预先确定的时钟周期内驱动 HREADY 为高。如果要求硬件保护,那么这可以被 RETRY (响应)的从机自己执行。当一个从机发出一个 RETRY 信号后,它能够采样主机序号。在这之后和传输最终完成之前,  RETRY 的从机可以检查做出的每次传输尝试以确保主机序号是相同的。如果从机发现主机号不一致,那么它可以选择下列的行动方式:
  • 一个错误响应;
  • 一个信号给仲裁器;
  • 一个系统级中断;
  • 一个完全的系统复位

4、分割传输的总线移交

        协议要求主机在接收到一个SPLIT或者RETRY响应后立刻执行一个空闲传输,以允许总线转移给另外一个主机。下图表示了发生一个分块(SPLIT)传输的顺序事件:

需要注意以下的要点:
        (1)传输的地址在时间 T1 之后出现在总线上。在时钟沿 T2 T3 后从机返回两个周期的 SPLIT 响应;
        (2)在第一个响应周期的末尾,也就是 T3 ,主机能够检测到传输将会被分块因此(主
机)改变接下来的传输控制信号以表示一个空闲传输;
        (3)同样也在时间 T3 处仲裁器采样响应信号并确定传输已经被分块。之后仲裁器可以调整仲裁优先权并且在接下来的周期改变授予信号,这样新的主机能够在时间 T4后被授予地址总线;
        (4)新主机可以保证立刻访问(总线)因为空闲传输总是在一个周期内完成。

三、小结

在本文中我们讲述了AHB协议的分割传输机制,它使得从机可以决定一次传输是否继续进行,以防止 传输的执行将占据大量的时钟周期,有效提高了总线的公平性与效率问题,在后续的文章中我们将一次性学习完AHB最后的内容,包括有复位,数据总线的位宽和接口设备等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102322.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读 BackgroundIntroducitonProblem StatementMethodology Δ W \Delta W ΔW 的选择 W W W的选择 总结 今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Lan…

交叉编译 libzdb

参考博客:移植libzdb3.2.2到arm_configure: error: no available database found or s_酣楼驻海的博客-CSDN博客 编译时间 2023-08-23 libzdb 下载: 源码访问如下: https://bitbucket.org/tildeslash/libzdb/src/master/ git 下载链接 …

低代码开发ERP:精打细算,聚焦核心投入

企业数字化转型已经成为现代商业环境中的一项关键任务。如今,企业面临着日益激烈的竞争和不断变化的市场需求。在这样的背景下,数字化转型不仅是企业生存的必然选择,也是取得竞争优势和实现可持续发展的关键因素。 在数字化转型的过程中&…

[oneAPI] 基于BERT预训练模型的英文文本蕴含任务

[oneAPI] 基于BERT预训练模型的英文文本蕴含任务 Intel DevCloud for oneAPI 和 Intel Optimization for PyTorch基于BERT预训练模型的英文文本蕴含任务语料介绍数据集构建 模型训练 结果参考资料 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0…

3D数据转换工具HOOPS Exchange概览

HOOPS Exchange SDK是一组C软件库,使开发团队能够快速为其应用程序添加可靠的2D和3D CAD导入和导出功能。这允许访问广泛的数据,包括边界表示(BREP)、产品制造信息(PMI)、模型树、视图、持久ID、样式、构造…

使用 MATLAB 和 Simulink 对雷达系统进行建模和仿真

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Redis多机实现

Background 为啥要有多机--------------1.容错 2.从服务器分担读压力。 主从结构一大难题------------如何保障一致性,对这个一致性要求不是很高,因为redis是用来做缓存的 同时我们要自动化进行故障转移-------哨兵机制,同时哨兵也可能cra…

使用mysql:5.6和 owncloud 镜像,构建一个个人网盘。

1、使用mysql:5.6和 owncloud 镜像,构建一个个人网盘。 拉取mysql:5.6和owncloud的镜像和生成实例 [rootlocalhost ~]# docker pull mysql:5.6 [rootlocalhost ~]# docker pull ownclound [rootlocalhost ~]# docker run -d --name mydb1 --env MYSQL_ROOT_PASSWO…

智慧工地:安防监控EasyCVR智慧工地视频监管风险预警平台的应用

智慧工地方案是一种结合现代化技术与工地管理实践的创新型解决方案。它通过实时监控、数据分析、人工智能等技术手段,使工地管理更加高效、智能化。在建设智慧工地的过程中,除了上述提到的利用物联网技术实现设备互联、数据采集及分析以外,还…

python - 编程中【工厂模式】和【单例模式】区别以及代码示例详解

一. 概念 工厂模式和单例模式都是面向对象编程中常用的设计模式。 工厂模式(FactoryPattern):是一种创建型模式,它提供了一种方法来创建对象,而不需要暴露对象的创建逻辑。这种模式通过定义一个工厂类,通…

远程端口转发 实践 如何将物理机某一端口的服务转发到vps上,使得外网能访问到

以本机1470端口(我的sqli-labs)与vps的9023端口为例。 SSH基本的连接命令是: ssh usernamehostname这里牵扯到了两台主机,一是执行命令、运行SSH客户端的主机,我们称为本地主机A【Host A】;二是接收连接请…

小程序运营方式有哪些?如何构建小程序运营框架?

​如今,每个企业基本都做过至少一个小程序,但由于小程序本身不具备流量、也很少有自然流量,因此并不是每个企业都懂如何运营小程序。想了解小程序运营方式方法有哪些? 在正式运营小程序前,了解小程序的功能与企业实际经…

Heikin Ashi最简单的一种烛台移动平均线

是不是每次进行交易的时候,市场上的各种新闻真真假假,搞的交易者每次都分不清楚,今天FPmarkets澳福给各位投资者推荐一种交易策略——“Heikin Ashi” “Heikin Ashi”只通过四个参数构建:开盘价、收盘价、最高价和最低价(最大和…

ssm汽车养护管理系统源码和论文

ssm汽车养护管理系统038 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 开题报告内容:(研究现状、目的意义;基本内容、研究方法、参考文献等。) 研究现状 国外…

chapter 3 Free electrons in solid - 3.1 自由电子模型

3.1 自由电子模型 Free electron model 研究晶体中的电子: 自由电子理论:不考虑离子实能带理论:考虑离子实(周期性势场)的作用 3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model (1)德鲁德模型 德鲁…

golang 协程的实现原理

核心概念 要理解协程的实现, 首先需要了解go中的三个非常重要的概念, 它们分别是G, M和P, 没有看过golang源代码的可能会对它们感到陌生, 这三项是协程最主要的组成部分, 它们在golang的源代码中无处不在. G (goroutine) G是goroutine的头文字, goroutine可以解释为受管理的…

React(7)

1.React Hooks 使用hooks理由 1. 高阶组件为了复用,导致代码层级复杂 2. 生命周期的复杂 3. 写成functional组件,无状态组件 ,因为需要状态,又改成了class,成本高 1.1 useState useState();括号里面处的是初始值;返回的是一个…

2023年大数据与区块链国际会议 | EI、Scoups检索

会议简介 Brief Introduction 2023年大数据与区块链国际会议(ICBDB 2023) 会议时间:2023年11月17 -19日 召开地点:中国西安 大会官网:www.icobdb.org 2023年大数据与区块链国际会议(ICBDB 2023)…

论文及代码详解——Restormer

文章目录 论文详解Overall pipelineMulti-Dconv Head Transposed AttentionGated-Dconv Feed-Forward Network 代码详解 论文:《Restormer: Efficient Transformer for High-Resolution Image Restoration》 代码:https://github.com/swz30/Restormer 论…

Jmeter常用线程组设置策略

一、前言 ​ 在JMeter压力测试中,我们时常见到的几个场景有:单场景基准测试、单场景并发测试、单场景容量测试、混合场景容量测试、混合场景并发测试以及混合场景稳定性测试 在本篇文章中,我们会用到一些插件,在这边先给大家列出&…