2023年高教社杯 国赛数学建模思路 - 复盘:校园消费行为分析

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())# 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/105894.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android进阶之路 - EditText输入字体自适应

遇到这么一个需求&#xff1a;“控件宽度有限&#xff0c;随着输入内容&#xff0c;动态修改字体大小”&#xff0c;如果是你&#xff0c;只如何来实现&#xff1f;又有几种方式&#xff1f; 嗯&#xff0c;就是这么一个简单的需求&#xff0c;让我记录了俩篇blog Android进阶…

用docker-compose搭建LNMP

docker-compose搭建LNMP 一、compose 的部署1.Docker Compose 环境安装 二、编写Docker Compose1.准备依赖文件,配置nginx2.配置mysql3.配置php4.编写docker-compose.yml5.执行6.查看 一、compose 的部署 &#xff08;1&#xff09;公司在实际的生产环境中&#xff0c;需要使用…

商品搜索网:连接您与各类商品的桥梁

导语&#xff1a;在如今信息爆炸的时代&#xff0c;购物已经不再是传统的实体店购买&#xff0c;而是通过互联网实现的线上购物方式。而要实现高效的线上购物&#xff0c;商品搜索引擎则成为我们的得力助手。作为国内垂直的商品搜索之一&#xff0c;为中国用户提供全面的数码电…

【Qt专栏】实现单例程序,禁止程序多开的几种方式

目录 一&#xff0c;简要介绍 二&#xff0c;实现示例&#xff08;Windows&#xff09; 1.使用系统级别的互斥机制 2.通过共享内存&#xff08;进程间通信-IPC&#xff09; 3.使用命名互斥锁&#xff08;不推荐&#xff09; 4.使用文件锁 5.通过网络端口检测 一&#xf…

Linux 下 Mysql 的使用(Ubuntu20.04)

文章目录 一、安装二、使用2.1 登录2.2 数据库操作2.2.1 创建数据库2.2.2 删除数据库2.2.3 创建数据表 参考文档 一、安装 Linux 下 Mysql 的安装非常简单&#xff0c;一个命令即可&#xff1a; sudo apt install mysql-server检查安装是否成功&#xff0c;输入&#xff1a; …

使用kubeadm方式快速部署一个K8S集群

目录 一、环境准备 二、环境初始化 三、在所有主机上安装相关软件 1、安装docker 2、配置k8s的yum源 3、安装kubelet、kubeadm、kubectl 四、部署Kubernetes Master 五、加入Kubernets Node 六、部署CNI网络插件 七、测试k8s集群 一、环境准备 我的是CentOS7系统&am…

iOS App签名与重签名:从开发者证书到重新安装运行

前文回顾&#xff1a; iOS脱壳技术&#xff08;二&#xff09;&#xff1a;深入探讨dumpdecrypted工具的高级使用方法 iOS逆向&#xff1a;越狱及相关概念的介绍 在本文中&#xff0c;我们将详细介绍iOS应用的签名过程&#xff0c;包括开发者证书的种类、证书与App ID、Provisi…

利用 Apifox 的 Mock 功能模拟常见业务数据的最佳方法

Apifox 拥有强大的 Mock 功能&#xff0c;兼容 Mock.js 语法的同时还提供 Nunjucks 和自定义脚本支持&#xff0c;能够满足不同场景需求。 今天给大家分享一些常见业务场景的 Mock 使用技巧&#xff0c;当然&#xff0c;实现的方法不唯一。在开始之前&#xff0c;你需要将 Api…

【C++】list

list 1. 简单了解list2. list的常见接口3. 简单实现list4. vector和list比较 1. 简单了解list list的底层是带头双向循环列表。因此list支持任意位置的插入和删除&#xff0c;且效率较高。但其缺陷也很明显&#xff0c;由于各节点在物理空间是不连续的&#xff0c;所以不支持对…

Python项目开发案例————学生信息管理系统(附源码)

一、学生信息管理系统 本文使用Python语言开发了一个学生信息管理系统&#xff0c;该系统可以帮助教师快速录入学生的信息&#xff0c;并且对学生的信息进行基本的增、删、改、查操作&#xff1b;还可以实时地将学生的信息保存到磁盘文件中。 1.1 需求分析 为了顺应互联网时代…

软件测试及数据分析处理实训室建设方案

一 、系统概述 软件测试及数据分析处理是软件开发过程中的一项重要测试活动&#xff0c;旨在验证不同软件模块或组件之间的集成与交互是否正常。综合测试确保各个模块按照设计要求正确地协同工作&#xff0c;以实现整个软件系统的功能和性能。以下是软件测试及数据分析处理的一…

SpringMVC程序开发

前言&#xff1a; &#x1f4d5;作者简介&#xff1a;热爱编程的小七&#xff0c;致力于C、Java、Python等多编程语言&#xff0c;热爱编程和长板的运动少年&#xff01; &#x1f4d8;相关专栏Java基础语法&#xff0c;JavaEE初阶&#xff0c;数据库&#xff0c;数据结构和算法…

【位运算】算法实战

文章目录 一、算法原理常见的位运算总结 二、算法实战1. leetcode面试题01.01. 判断字符是否唯一2. leetcode268 丢失的数字3. leetcode371 两整数之和4. leetcode004 只出现一次的数字II5. leetcode面试题17.19. 消失的两个数字 三、总结 一、算法原理 计算机中的数据都以二进…

香港服务器怎么打开SSH

​  SSH是一种远程登录协议&#xff0c;可以通过加密方式在网络上安全地传输数据。它允许用户在远程服务器上执行命令&#xff0c;管理文件和目录&#xff0c;并进行其他系统管理任务。 如何打开SSH服务? 1.确认已安装OpenSSH服务器&#xff1a; 你可以通过命令sudoapt-geti…

开发一款AR导览导航小程序多少钱?ar地图微信小程序 ar导航 源码

随着科技的不断发展&#xff0c;增强现实&#xff08;AR&#xff09;技术在不同领域展现出了巨大的潜力。AR导览小程序作为其中的一种应用形式&#xff0c;为用户提供了全新的观赏和学习体验。然而&#xff0c;开发一款高质量的AR导览小程序需要投入大量的时间、人力和技术资源…

Sql Server导出数据库到另一个数据库

1.打开sql server数据库&#xff0c;连接到服务器后&#xff0c;找到需要导出的数据库&#xff0c;右击后选择 任务->导出数据。 2.点击 下一步。 3.身份验证可以使用SQL Server身份验证&#xff0c;就是当时建立连接时的用户名和密码&#xff0c;数据库名称使用默认的&…

Kafka生产者原理 kafka生产者发送流程 kafka消息发送到集群步骤 kafka如何发送消息 kafka详解

kafka尚硅谷视频&#xff1a; 10_尚硅谷_Kafka_生产者_原理_哔哩哔哩_bilibili ​ 1. producer初始化&#xff1a;加载默认配置&#xff0c;以及配置的参数&#xff0c;开启网络线程 2. 拦截器拦截 3. 序列化器进行消息key, value序列化 4. 进行分区 5. kafka broker集群 获取…

数据库为什么使用B+树而不是B树做索引

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

华为质量管理:从产品质量到用户体验,Kano模型成为新方向

目录 前言 华为质量管理的四个阶段 基于 IPD 如何做质量管理呢&#xff1f; CSDN相关课程 作者简介 前言 今天继续来谈谈华为流程体系中的质量管理过程。 通常来说质量具体是指产品的质量&#xff0c;也就是产品的使用价值及其属性。 产品再细分的话可以分为三个层次&a…

Python 数据分析——matplotlib 快速绘图

matplotlib采用面向对象的技术来实现&#xff0c;因此组成图表的各个元素都是对象&#xff0c;在编写较大的应用程序时通过面向对象的方式使用matplotlib将更加有效。但是使用这种面向对象的调用接口进行绘图比较烦琐&#xff0c;因此matplotlib还提供了快速绘图的pyplot模块。…