卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

文章目录

  • 5、卷积神经网络
    • 5.10、⭐批量归一化
      • 5.10.1、理论部分
      • 5.10.2、代码部分
    • 5.11、⭐残差网络(`ResNet`)
      • 5.11.1、理论部分
      • 5.11.2、代码部分
  • 话题闲谈

5、卷积神经网络

5.10、⭐批量归一化

5.10.1、理论部分

批量归一化可以解决深层网络中梯度消失和收敛慢的问题,通过固定每个批次的均值和方差来加速收敛,一般不改变模型精度。批量规范化已经被证明是一种不可或缺的方法,它适用于几乎所有图像分类器。

批量规划是一个线性变换,把参数的均值方差给拉的比较好。让你变化不那么剧烈。

批量规范化应用于单个可选层(也可以应用到所有层),其原理如下:在每次训练迭代中,我们首先规范化输入,即通过减去其均值并除以其标准差,其中两者均基于当前小批量处理。 接下来,我们应用比例系数和比例偏移。 正是由于这个基于批量统计的标准化,才有了批量规范化的名称。

B N ( x ) = γ ⊚ x − μ ^ B σ ^ B + β BN(x) = γ⊚\frac{x-\hat{μ}_B}{\hat{σ}_B}+β BN(x)=γσ^Bxμ^B+β

其中,x∈B,x是一个小批量B的输入,比例系数γ,比例偏移β。 μ ^ β B \hat{μ}β_B μ^βB小批量B的均值, σ ^ B \hat{σ}_B σ^B小批量B的标准差。

μ ^ B = 1 ∣ B ∣ ∑ x ∈ B x \hat{μ}_B = \frac{1}{|B|}\sum_{x∈B}{x} μ^B=B1xBx

σ ^ B 2 = 1 ∣ B ∣ ∑ x ∈ B ( x − μ ^ B ) 2 + c {\hat{σ}_B}^2 = \frac{1}{|B|}\sum_{x∈B}{(x-\hat{μ}_B)^2 + c} σ^B2=B1xB(xμ^B)2+c

差估计值中添加一个小的常量c>0,以确保永远不会尝试除以零【BN(x)分母】。通过使用平均值和方差的噪声(noise)估计来抵消缩放问题,噪声这里是有益的。

  • 可学习的参数:比例系数γ,比例偏移β;

  • 作用在全连接层和卷积层输出,激活函数前;

  • 作用在全连接层和卷积层输入。

    作用于全连接层的特征维

    作用于卷积层的通道维

5.10.2、代码部分

直接使用深度学习框架中定义的BatchNorm定义Sequential

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# nn.BatchNorm2d(6) 二维卷积操作的批归一化层,6通道nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),#  # nn.BatchNorm1d(120) 一维卷积操作的批归一化层,120通道nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

批量规范化应用于LeNet

net = nn.Sequential(# BatchNorm(6, num_dims=4) num_dims 参数用来根据输入数据的维度选择适当的批归一化操作,输入6通道,输入4维,这里会选择nn.BatchNorm2d进行归一化。这里和 nn.BatchNorm2d(6) 一样的。nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))

5.11、⭐残差网络(ResNet

5.11.1、理论部分

核心思想:保证加更多的层效果较之前不会变差。

设计越来越深的网络,网络表现不一定会更好。

实现原理-残差块(residual blocks


每个附加层都应该更容易地包含原始函数作为其元素之一。

如下图:

正常块中,输出直接作为理想映射 f ( x ) f(x) f(x)

残差块中,输出为 f ( x ) − x f(x)-x f(x)x x x x两部分

x经过残差映射 f ( x ) − x f(x)-x f(x)x输出

x作为原始数据恒等映射到输出

两者共同组成 f ( x ) f(x) f(x)

在这里插入图片描述

5.11.2、代码部分

实现残差块

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):  #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

生成两种类型的网络:

在这里插入图片描述

验证输入输出情况一致

blk = Residual(3,3)
#X batch_size=4,input_channel=3,shape=6*6
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])

验证增加输出通道数,同时减半输出的高和宽

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])

定义ResNet第一个Sequential

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

定义残差块

def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk

定义其他(含残差块)Sequential

每个模块使用2个残差块

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

ResNet中加入全局平均汇聚层,以及全连接层输出

每个模块【b2-b5】有4个卷积层(不包括恒等映射的1×1卷积层)。 加上第一个7×7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18

在这里插入图片描述

net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

验证每模块输出形状变化

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 128, 28, 28])
Sequential output shape:	 torch.Size([1, 256, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 512, 1, 1])
Flatten output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])

训练模型

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

话题闲谈

怎么维护自己的电脑?
对于深度学习工作者而言,电脑是最为重要的工作工具之一,因此维护电脑的健康状态对工作、学习和生活都至关重要。


首先,定期进行系统和软件的更新,保持操作系统和应用程序在最新版本,以获得更好的性能和安全性。其次,保持电脑的清洁,定期清理灰尘和污垢,确保散热良好,避免过热对硬件的损害。此外,备份重要数据是必不可少的,以防止意外数据丢失。
在学习方面,合理规划学习时间,避免长时间的连续使用电脑,适时休息,保护眼睛和身体健康。
生活娱乐方面,多参与户外活动,保持身体锻炼,减轻长时间坐在电脑前带来的压力。总之,深度学习工作者应关注电脑的硬件和软件健康,平衡工作、学习和生活,保持身心健康。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106784.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习经典检测方法的概述

深度学习经典的检测方法 two-stage(两阶段):Faster-rcnn Mask-Rcnn系列 两阶段(two-stage)是指先通过一个区域提取网络(region proposal network,RPN)生成候选框,再通过…

k8s 常用命令(四)

12、删除pod中的nginx服务及service [rootmaster ~]# kubectl delete deployment nginx -n kube-public [rootmaster ~]# kubectl delete svc -n kube-public nginx-service 13、查看endpoint的信息 [rootmaster ~]# kubectl get endpoints 14、修改/更新(镜像、…

react18+antd5.x(1):Notification组件的二次封装

antdesign已经给我们提供了很好的组件使用体验,但是我们还需要根据自己的项目业务进行更好的封装,减少我们的代码量,提升开发体验 效果展示 开起来和官网的使用没什么区别,但是我们在使用的时候,进行了二次封装,更利于我们进行开发 MyNotification.jsx,是我们的业务页面…

百度23Q2财报最新发布:营收利润加速增长,AI+生态战略渐显规模

百度集团-SW(9888.HK)Q2财报已于2023/08/22(美东)盘前发布,二季度百度集团整体收入实现341亿元,同比增长15%;归属百度的净利润(non-GAAP)达到80亿元,同比增长44%。营收和利润双双实现大幅增长,超市场预期。其中,百度核…

队列(Queue):先进先出的数据结构队列

栈与队列https://blog.csdn.net/qq_45467165/article/details/127958960?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22127958960%22%2C%22source%22%3A%22qq_45467165%22%7D 队列(Queue)是一种常见的线…

CV:边缘检测的算法包含 Prewitt、Sobel、Laplacian 和 Canny。

目录 1. 边缘检测(Prewitt) 2. 边缘检测(Sobel) 3. 边缘检测(Laplacian) 3. 边缘检测(Canny) 边缘检测的算法包含 Prewitt、Sobel、Laplacian 和 Canny。 人在图像识别上具有难…

yolov3加上迁移学习和适度的数据增强形成的网络应用在输电线异物检测

Neural Detection of Foreign Objects for Transmission Lines in Power Systems Abstract. 输电线路为电能从一个地方输送到另一个地方提供了一条路径,确保输电线路的正常运行是向城市和企业供电的先决条件。主要威胁来自外来物,可能导致电力传输中断。…

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比

多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比 目录 多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实现LSTM-Adaboost和LSTM多变量时间序列预测对比 模型…

亚马逊云科技 云技能孵化营 初识机器学习

目录 前言 一、课程介绍 二、什么是机器学习 三、机器学习算法进阶过程 四、亚马逊云科技能给我们什么 总结 前言 近期参加了“亚马逊云科技 云技能孵化营”,该孵化营的亚马逊云科技培训与认证团队为开发者准备了云从业者的精要知识及入门课程,帮助…

[PyTorch][chapter 51][Auto-Encoder -1]

目录: 简介 损失函数 自动编码器的类型 一 AutoEncoder 简介: 自动编码器是一种神经网络,用于无监督学习任务.(没有标签或标记数据), 例如降维,特征提取和数据压缩. 主要任务: 1: 输入数据 …

一分钟学会用pygame制作棋盘背景

一分钟一个Pygame案例,这一集我们来学习一下如何生成一个视频中的棋盘背景效果,非常非常简单。 视频教程链接:https://www.bilibili.com/video/BV17G411d7Ah/ 当然我们这里是用来做页面的背景,你也可以拿来做别的效果&#xff0…

测试框架pytest教程(10)自定义命令行-pytest_addoption

pytest_addoption pytest_addoption是pytest插件系统中的一个钩子函数,用于向pytest添加自定义命令行选项。 在pytest中,可以使用命令行选项来控制测试的行为和配置。pytest_addoption钩子函数允许您在运行pytest时添加自定义的命令行选项,…

知识储备--基础算法篇-动态规划

1.前言 第一次接触动态规划,不知道具体什么意思,做了题才发现动态规划就是把大问题变成小问题,并解决了小问题重复计算的方法称为动态规划。比如上楼梯,一次上一阶或二阶,求有多少种算法,就可以拆成最后一…

使用Pytorch和OpenCV实现视频人脸替换

“DeepFaceLab”项目已经发布了很长时间了,作为研究的目的,本文将介绍他的原理,并使用Pytorch和OpenCV创建一个简化版本。 本文将分成3个部分,第一部分从两个视频中提取人脸并构建标准人脸数据集。第二部分使用数据集与神经网络一…

【C++】stack和queue

stack和queue 1. stack1.1 简单了解stack1.2 stack的常见接口1.3 练习1.4 模拟实现stack 2. queue2.1 简单了解queue2.2 queue的常见接口2.3 练习2.4 模拟实现queue 3. deque(了解)4. priority_queue4.1 优先级队列的介绍4.2 priority_queue的常见接口4.…

【80天学习完《深入理解计算机系统》】第十天 3.3 条件码寄存器【CF ZF SF OF】【set】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)   文章字体风格: 红色文字表示&#…

Python Scrapy网络爬虫框架从入门到实战

Python Scrapy是一个强大的网络爬虫框架,它提供了丰富的功能和灵活的扩展性,使得爬取网页数据变得简单高效。本文将介绍Scrapy框架的基本概念、用法和实际案例,帮助你快速上手和应用Scrapy进行数据抓取。 Scrapy是一个基于Python的开源网络爬…

如何进行微服务的集成测试

集成测试的概念 说到集成测试,相信每个测试工程师并不陌生,它不是一个崭新的概念,通过维基百科定义可以知道它在传统软件测试中的含义。 Integration testing (sometimes called integration and testing, abbreviated I&T) is the pha…

Git 版本控制系统

git相关代码 0、清屏幕:clear 1、查看版本号 git -v2、暂存、更改、提交 3、当前项目下暂存区中有哪些文件 git ls-files4、查看文件状态 git status -s5、暂时存储,可以临时恢复代码内容 git restore 目标文件 //(注意:完全…

自动控制原理笔记-采样控制系统

目录 采样控制系统的基本概念: 采样过程及采样定理: 一、采样过程 二、采样定理(香农采样定理、奈奎斯特采样定律) 三、信号复现 四、零阶保持器 z变换与z反变换: z变换的定义 z变换基本定理 z反变换 采样系…