2023国赛数学建模思路 - 案例:退火算法

文章目录

    • 1 退火算法原理
      • 1.1 物理背景
        • 1.2 背后的数学模型
    • 2 退火算法实现
      • 2.1 算法流程
      • 2.2算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 退火算法原理

1.1 物理背景

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。

在这里插入图片描述

1.2 背后的数学模型

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。

在这里插入图片描述

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
在这里插入图片描述

Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

2 退火算法实现

2.1 算法流程

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2
在这里插入图片描述

2.2算法实现

import numpy as np
import matplotlib.pyplot as plt
import randomclass SA(object):def __init__(self, interval, tab='min', T_max=10000, T_min=1, iterMax=1000, rate=0.95):self.interval = interval                                    # 给定状态空间 - 即待求解空间self.T_max = T_max                                          # 初始退火温度 - 温度上限self.T_min = T_min                                          # 截止退火温度 - 温度下限self.iterMax = iterMax                                      # 定温内部迭代次数self.rate = rate                                            # 退火降温速度#############################################################self.x_seed = random.uniform(interval[0], interval[1])      # 解空间内的种子self.tab = tab.strip()                                      # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值#############################################################self.solve()                                                # 完成主体的求解过程self.display()                                              # 数据可视化展示def solve(self):temp = 'deal_' + self.tab                                   # 采用反射方法提取对应的函数if hasattr(self, temp):deal = getattr(self, temp)else:exit('>>>tab标签传参有误:"min"|"max"<<<')x1 = self.x_seedT = self.T_maxwhile T >= self.T_min:for i in range(self.iterMax):f1 = self.func(x1)delta_x = random.random() * 2 - 1if x1 + delta_x >= self.interval[0] and x1 + delta_x <= self.interval[1]:   # 将随机解束缚在给定状态空间内x2 = x1 + delta_xelse:x2 = x1 - delta_xf2 = self.func(x2)delta_f = f2 - f1x1 = deal(x1, x2, delta_f, T)T *= self.rateself.x_solu = x1                                            # 提取最终退火解def func(self, x):                                              # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef p_min(self, delta, T):                                      # 计算最小值时,容忍解的状态迁移概率probability = np.exp(-delta/T)return probabilitydef p_max(self, delta, T):probability = np.exp(delta/T)                               # 计算最大值时,容忍解的状态迁移概率return probabilitydef deal_min(self, x1, x2, delta, T):if delta < 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_min(delta, T)if P > random.random(): return x2else: return x1def deal_max(self, x1, x2, delta, T):if delta > 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_max(delta, T)if P > random.random(): return x2else: return x1def display(self):print('seed: {}\nsolution: {}'.format(self.x_seed, self.x_solu))plt.figure(figsize=(6, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seed, self.func(self.x_seed), 'bo', label='seed')plt.plot(self.x_solu, self.func(self.x_solu), 'r*', label='solution')plt.title('solution = {}'.format(self.x_solu))plt.xlabel('x')plt.ylabel('y')plt.legend()plt.savefig('SA.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':SA([-5, 5], 'max')

实现结果

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/107593.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力与美的交响丨远航Y6全国媒体试驾会成都举办,实力演绎中式豪华+极致性能

8月24日&#xff0c;四川成都&#xff0c;远航Y6全国媒体试驾会圆满举办。来自全国的近百家媒体亲身试乘试驾&#xff0c;深度感受远航Y6诠释的高端豪华新体验。 绵绵细雨难掩相聚的热情。远航汽车自去年成都车展正式发布亮相&#xff0c;就与成都结下了不解之缘。历经一年的持…

关于chromedriver.exe一系列问题的解决办法

最新 chromedriver.exe下载地址&#xff1a;https://googlechromelabs.github.io/chrome-for-testing/#stable 下载最新版本的 chromedriver.exe 将其解压在 python.exe 同目录下&#xff0c;以及Chrome 的路径下 例如&#xff1a; C:\Program Files\Google\Chrome\Applicati…

算法通关村第十一关——搞清位运算

源码、反码和补码 很多人都记不清源码、反码和补码的区分&#xff0c;都是二进制&#xff0c;其实记忆起来很简单&#xff0c;分为正数和负数来记。正数的原码、反码和补码都是一样的&#xff0c;负数的原码符号位为1&#xff0c;反码是在原码的基础上进行改变&#xff1a;保持…

6. 使用python将多个Excel文件合并到同一个excel-附代码解析

【目录】 文章目录 6. 使用python将多个Excel文件合并到同一个excel-附代码解析1. 目标任务2. 结果展示3. 代码示例4. 代码解析4.1 导入库4.2 调用库的类、函数、变量语法4.3 os.listdir-返回目录中的文件名列表4.4 startswith-用于判断一个字符串是否以指定的前缀开头4.5 ends…

Netty入门学习和技术实践

Netty入门学习和技术实践 Netty1.Netty简介2.IO模型3.Netty框架介绍4. Netty实战项目学习5. Netty实际应用场景6.扩展 Netty 1.Netty简介 Netty是由JBOSS提供的一个java开源框架&#xff0c;现为 Github上的独立项目。Netty提供异步的、事件驱动的网络应用程序框架和工具&…

Docker 将容器打包成镜像推送镜像到仓库

Docker 将容器打包成镜像&推送镜像到仓库 一、将容器打包成镜像 $ docker commit <容器ID> <镜像名称:标签>示例&#xff1a; $ sudo docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS …

数字孪生:重塑制造、医疗和能源等领域的未来

数字孪生技术&#xff0c;作为虚拟仿真的重要领域&#xff0c;正以其强大的能力在各个行业中创造前所未有的创新。本文带大家一起深入探讨数字孪生技术在不同领域的广泛应用场景&#xff0c;展示其在实现效率、可靠性和智能化方面的积极影响。 制造业与工业领域 数字孪生技术在…

Python+TinyPNG熊猫网站自动化的压缩图片

前言 本篇在讲什么 PythonTinyPNG自动化处理图片 本篇需要什么 对Python语法有简单认知 依赖Python2.7环境 依赖TinyPNG工具 本篇的特色 具有全流程的图文教学 重实践&#xff0c;轻理论&#xff0c;快速上手 提供全流程的源码内容 ★提高阅读体验★ &#x1f449;…

抽象类和接口有什么区别?

在 Java 中&#xff0c;抽象类和接口是两种不同的类类型。它们都不能直接实例化&#xff0c;并且它们都是用来定义一些基本的属性和方法的&#xff0c;但它们有以下几点不同&#xff1a; 定义不同&#xff1a;定义的关键字不同&#xff0c;抽象类是 abstract&#xff0c;而接口…

ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564) 二、 CVE-2017-7564 一、ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564) Title 启用安全自托管侵入式调试接口&#xff0c;可允许非安全世界引发安全世界panic CV…

【LeetCode75】第三十七题 二叉树中的最长交错路径

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们一棵二叉树&#xff0c;问我们在这棵树里能找到的最长交错路径。最长交错路径就是在二叉树里一左一右一左一右这样走&#xff0c;最…

java- ConcurrentHashMap 并发

1. ConcurrentHashMap 并发 1.1. 减小锁粒度 减小锁粒度是指缩小锁定对象的范围&#xff0c;从而减小锁冲突的可能性&#xff0c;从而提高系统的并发能力。减小锁粒度是一种削弱多线程锁竞争的有效手段&#xff0c;这种技术典型的应用是 ConcurrentHashMap(高性能的 HashMap)…

RT1050的ADC

文章目录 1 ADC介绍2 ADC框图2.1 外部输入通道2.2 输入电压范围2.3 触发源2.4 时钟源2.5 偏移矫正功能2.5.1 校准 1 ADC介绍 RT1052 有 2 个 ADC&#xff0c;每个 ADC 有 12 位、10 位、8 位可选&#xff0c;每个 ADC 有 16 个外部通道。 ADC具有最高 1MS/s 采样率支持单次或…

23.树表和哈希表的查找

当表插入、删除操作频繁时&#xff0c;为维护表的有序性&#xff0c;需要移动表中很多记录。基于此&#xff0c;我们可以改用动态查找表——几种特殊的树。表结构在查找过程中动态生成。对于给定值key&#xff0c;若表中存在&#xff0c;则成功返回&#xff1b;否则&#xff0c…

【微服务】Ribbon的实现原理

1、场景&#xff1a;这里有两个服务&#xff0c;user-server和store-server 1.1、user服务 接口&#xff1a; package com.lkx.user.controller;import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RestController…

HashTable, HashMap, ConcurrentHashMap 之间的区别

前言 哈希表的组织形式是这样的&#xff1a; 对于哈希表这种重要而又频繁被使用的数据结构&#xff0c;是否线程安全往往是人们经常考虑的方向之一。 一、HashTable HashTable是线程安全的。但是它的线程安全在于它的关键方法都使用了synchronized&#xff0c;比如get方法、pu…

Python | assert关键字

Python断言assert是帮助代码流畅的调试工具。断言主要是假设程序员知道或总是希望是真的&#xff0c;因此将它们放在代码中&#xff0c;这样这些失败不会允许代码进一步执行。 简单地说&#xff0c;断言是一个布尔表达式&#xff0c;用来检查语句是True还是False。如果语句为T…

R包开发-2.2:在RStudio中使用Rcpp制作R-Package(更新于2023.8.23)

目录 4-添加C函数 5-编辑元数据 6-启用Roxygen&#xff0c;执行文档化。 7-单元测试 8-在自己的计算机上安装R包&#xff1a; 9-程序发布 参考&#xff1a; 为什么要写这篇文章的更新日期&#xff1f;因为R语言发展很快&#xff0c;很多函数或者方式&#xff0c;现在可以使…

js中作用域的理解?

1.作用域 作用域&#xff0c;即变量(变量作用域又称上下文)和函数生效(能被访问)的区域或集合 换句话说&#xff0c;作用域决定了代码区块中变量和其他资源的可见性 举个例子 function myFunction() {let inVariable "函数内部变量"; } myFunction();//要先执行这…

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…