opencv-答题卡识别判卷

#导入工具包
import numpy as np
import argparse
import imutils
import cv2# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,help="path to the input image")
args = vars(ap.parse_args())# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rectdef four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
def sort_contours(cnts, method="left-to-right"):reverse = Falsei = 0if method == "right-to-left" or method == "bottom-to-top":reverse = Trueif method == "top-to-bottom" or method == "bottom-to-top":i = 1boundingBoxes = [cv2.boundingRect(c) for c in cnts](cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),key=lambda b: b[1][i], reverse=reverse))return cnts, boundingBoxes
def cv_show(name,img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()  # 预处理
image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
cv_show('blurred',blurred)
edged = cv2.Canny(blurred, 75, 200)
cv_show('edged',edged)# 轮廓检测
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) 
cv_show('contours_img',contours_img)
docCnt = None# 确保检测到了
if len(cnts) > 0:# 根据轮廓大小进行排序cnts = sorted(cnts, key=cv2.contourArea, reverse=True)# 遍历每一个轮廓for c in cnts:# 近似peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 准备做透视变换if len(approx) == 4:docCnt = approxbreak# 执行透视变换warped = four_point_transform(gray, docCnt.reshape(4, 2))
cv_show('warped',warped)
# Otsu's 阈值处理
thresh = cv2.threshold(warped, 0, 255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)
thresh_Contours = thresh.copy()
# 找到每一个圆圈轮廓
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) 
cv_show('thresh_Contours',thresh_Contours)
questionCnts = []# 遍历
for c in cnts:# 计算比例和大小(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 根据实际情况指定标准if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)# 按照从上到下进行排序
questionCnts = sort_contours(questionCnts,method="top-to-bottom")[0]
correct = 0# 每排有5个选项
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):# 排序cnts = sort_contours(questionCnts[i:i + 5])[0]bubbled = None# 遍历每一个结果for (j, c) in enumerate(cnts):# 使用mask来判断结果mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充cv_show('mask',mask)# 通过计算非零点数量来算是否选择这个答案mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)# 通过阈值判断if bubbled is None or total > bubbled[0]:bubbled = (total, j)# 对比正确答案color = (0, 0, 255)k = ANSWER_KEY[q]# 判断正确if k == bubbled[1]:color = (0, 255, 0)correct += 1# 绘图cv2.drawContours(warped, [cnts[k]], -1, color, 3)score = (correct / 5.0) * 100
print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped, "{:.2f}%".format(score), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow("Original", image)
cv2.imshow("Exam", warped)
cv2.waitKey(0)

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/107765.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【附安装包】Vred2023安装教程

软件下载 软件&#xff1a;Vred版本&#xff1a;2023语言&#xff1a;简体中文大小&#xff1a;2.39G安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.0GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a;https://pan.baidu.com…

Nginx 高级配置

目录 1 网页的状态页 2 Nginx 第三方模块 2.1 ehco 模块 3 变量 3.1 内置 3.2 定义变量 4 Nginx压缩功能 5 https 功能 6 自定义图标 1 网页的状态页 基于nginx 模块 ngx_http_stub_status_module 实现&#xff0c;在编译安装nginx的时候需要添加编译参数 --with-http…

pytest之parametrize参数化

前言 我们都知道pytest和unittest是兼容的&#xff0c;但是它也有不兼容的地方&#xff0c;比如ddt数据驱动&#xff0c;测试夹具fixtures&#xff08;即setup、teardown&#xff09;这些功能在pytest中都不能使用了&#xff0c;因为pytest已经不再继承unittest了。 不使用dd…

3 自制一个集群分发脚本

1. 随便取了一个名字&#xff1a;xsync 2. 在一个配置环境变量的目录下&#xff0c;我是放在了/opt/software下&#xff0c;这个路径我是配置了环境变量的。 3. 编辑脚本&#xff1a;vim xsync #!/bin/bash#1. 判断参数个数 if [ $# -lt 1 ] thenecho Not Enough Arguement!…

海康摄像头通过SDK接入到LiveNVR实现双向语音喊话对讲与网页无插件播放,并支持GB28181级联语音对讲...

目录 1、确认摄像头是否支持对讲2、摄像头视频类型复合流3、通道配置SDK接入4、视频广场点击播放5、相关问题 5.1、如何配置通道获取直播流&#xff1f;5.2、如何GB28181级联国标平台&#xff1f;6、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、确认摄像头是否支持对讲 可以访问摄…

为什么使用Nacos而不是Eureka(Nacos和Eureka的区别)

文章目录 前言一、Eureka是什么&#xff1f;二、Nacos是什么&#xff1f;三、Nacos和Eureka的区别3.1 支持的CAP3.2连接方式3.3 服务异常剔除3.4 操作实例方式 总结 前言 为什么如今微服务注册中心用Nacos相对比用Eureka的多了&#xff1f;本文章将介绍他们之间的区别和优缺点…

SemrushBot蜘蛛爬虫屏蔽方式

查看访问日志时候发现有SemrushBot爬虫 屏蔽方法&#xff1a; 使用robots.txt文件是一种标准的协议,用于告诉搜索引擎哪些页面可以和不能被爬取,如想禁止Googlebot爬取整个网站的话,可以在该文件中添加以下内容: User-agent: Googlebot Disallow: / 对于遵循robots协议的蜘蛛…

护目镜佩戴检测识别算法

护目镜佩戴检测识别算法通过opencvpython网络深度学习模型&#xff0c;护目镜佩戴检测识别算法实时监测工人的护目镜佩戴情况&#xff0c;发现未佩戴或错误佩戴的情况&#xff0c;及时提醒调整。与C / C等语言相比&#xff0c;Python速度较慢。也就是说&#xff0c;Python可以使…

【多线程】Thread类的用法

文章目录 1. Thread类的创建1.1 自己创建类继承Thread类1.2 实现Runnable接口1.3 使用匿名内部类创建Thread子类对象1.4 使用匿名内部类创建Runnable子类对象1.5 使用lambda创建 2. Thread常见的构造方法2.1 Thread()2.2 Thread(Runnable target)2.3 Thread(String name)2.4 Th…

什么是算法?

目录 算法是指解决方案的准确而完整的描述。 1.算法的基本特征 所谓算法&#xff0c;是一组严谨地定义运算顺序的规则 并且每一个规则都是有效的&#xff0c;且是明确的 此顺序将在有限的次数下终止 什么是算法&#xff1f; 算法的4个基本特征 算法的6个基本方法 选择算…

使用go语言、Python脚本搭建一个简单的chatgpt服务网站。

使用go语言、Python脚本搭建一个简单的GPT服务网站 前言 研0在暑假想提升一下自己&#xff0c;自学了go语言编程和机器学习相关学习&#xff0c;但是一味学习理论&#xff0c;终究是枯燥的&#xff0c;于是自己弄点小项目做。 在这之前&#xff0c;建议您需要掌握以下两个技…

5.网络原理之初识

文章目录 1.网络发展史1.1独立模式1.2网络互连1.3局域网LAN1.3.1基于网线直连1.3.2基于集线器组建1.3.3基于交换机组建1.3.4基于交换机和路由器组建1.3.4.1路由器和交换机区别 1.4广域网WAN 2.网络通信基础2.1IP地址2.2端口号2.3认识协议2.4五元组2.5 协议分层2.5.1 分层的作用…

Java项目-苍穹外卖-Day05-Redis技术应用

1.店铺营业状态设置 需求分析和设计 左上角要求是有回显的 所以至少两个接口 1.查询营业状态接口&#xff08;分为了管理端和用户端&#xff09; 2.修改营业状态接口 因为管理端和用户端路径不同&#xff0c;所以现在是至少三个接口的 可以发现如果存到表里除了id只有一个…

java八股文面试[JVM]——垃圾回收器

jvm结构总结 常见的垃圾回收器有哪些&#xff1f; CMS&#xff08;Concurrent Mark Sweep&#xff09; 整堆收集器&#xff1a; G1 由于整个过程中耗时最长的并发标记和并发清除过程中&#xff0c;收集器线程都可以与用户线程一起工作&#xff0c;所以总体上来说&#xff0c;…

leetcode 516. 最长回文子序列

2023.8.27 本题依旧使用dp算法做&#xff0c;可以参考 回文子串 这道题。dp[i][j]定义为&#xff1a;子串s[i,j] 的最长回文子串。 直接看代码: class Solution { public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(),vector<int&…

AIGC ChatGPT 实现动态多维度分析雷达图制作

雷达图在多维度分析中是一种非常实用的可视化工具&#xff0c;主要有以下优势&#xff1a; 易于理解&#xff1a;雷达图使用多边形或者圆形的形式展示多维度的数据&#xff0c;直观易于理解。多维度对比&#xff1a;雷达图可以在同一张图上比较多个项目或者实体在多个维度上的…

数据结构(Java实现)LinkedList与链表(下)

** ** 结论 让一个指针从链表起始位置开始遍历链表&#xff0c;同时让一个指针从判环时相遇点的位置开始绕环运行&#xff0c;两个指针都是每次均走一步&#xff0c;最终肯定会在入口点的位置相遇。 LinkedList的模拟实现 单个节点的实现 尾插 运行结果如下&#xff1a; 也…

Linux 线程安全

一、线程安全的概念 线程安全即就是在多线程运行的时候&#xff0c;不论线程的调度顺序怎样&#xff0c;最终的结果都是 一样的、正确的。那么就说这些线程是安全的。 二、如何保证线程安全 1.线程同步 保证同一时刻只有一个线程访问临界资源。线程同步的方法有4种&#xf…

成都瀚网科技:抖店如何经营?

作为热门的短视频分享平台&#xff0c;抖音不仅是一种娱乐工具&#xff0c;更是一个蕴藏着无限商机的电商平台。开店、抖音下单成为很多人的选择。那么&#xff0c;抖音如何开店、下单呢&#xff1f; 1、如何在抖音上开店和下单&#xff1f; 注册账号&#xff1a;首先&#xff…

重要岗位人员脱岗预警 脱岗监测预警算法

重要岗位人员脱岗预警 脱岗监测预警算法通过yolov8网络模型深度学习算法&#xff0c;重要岗位人员脱岗预警 脱岗监测预警算法对现场人员行为进行实时监测和识别&#xff0c;通过算法识别脱岗、睡岗和玩手机等异常行为&#xff0c;实现对人员行为的预警和告警。YOLOv8是目前YOLO…