Python 中具有漂移的指数布朗运动;模拟股票价格的未来分布,以预测股票的未来价值

一、说明

        随机过程是由概率定律生成的一系列事件或路径。也就是说,随机事件可以随着时间的推移而发生,但受特定的统计和概率规则的约束。主要的随机过程是随机游走或布朗运动。这个过程可以用来预测许多变量,这些变量似乎遵循随机趋势,但受到概率定律的限制。
图片来源:内在价值

二、赋予动机

        为了预测股票的未知未来价值,我将在本文中展示一个与路径无关的 Python 蒙特卡罗模拟,以使用称为指数布朗运动(随机游走)过程的随机过程来模拟股票价格的未来分布。

        预测是预测未来的行为,无论是基于历史数据还是在没有历史存在的情况下对未来的猜测。当存在历史数据时,定量或统计方法是最好的,但如果不存在历史数据,那么定性或判断性方法通常是唯一的手段。

三、使用随机过程进行预测的基础知识

        随机过程只不过是一个数学定义的方程,可以随着时间的推移产生一系列结果,这些结果本质上不是确定性的。也就是说,它不遵循任何简单的可识别规则,例如价格每年将增加 X 个百分点,或者收入将增加 X 加 Y 个百分点。

        根据定义,随机过程是不确定的,可以将数字代入随机过程方程中,每次都获得不同的结果。例如,股票价格的路径本质上是随机的,人们无法可靠地预测确切的股票价格路径。

        然而,价格随时间的演变被包裹在产生这些价格的过程中。这个过程是固定的和预先确定的,但结果不是。

        因此,通过随机模拟,我们创建了多个价格路径,获得了这些模拟的统计样本,并根据用于生成时间序列的随机过程的性质和参数,对实际价格可能采取的潜在路径进行推断。

四、随机游走:布朗运动

图1

         假设一个过程 X,其中

图2

         当且仅当

图3

        是连续的,且起点是

图4

        其中 X 呈正态分布,均值为零,方差为 1 或

图5

        并且时间上的每个增量都依赖于每个先前的增量,并且本身正态分布,均值零和方差 t,使得

图6

         然后,过程

图7

遵循指数布朗运动,其中α是漂移参数,σ波动性度量,并且

图8

        这样

图9
​​​​​​​

        或 X 和 dX 对数呈正态分布。

        如果在时间零,

图10
​​​​​​​

        则过程 X 在任何时候的期望值 t 是这样的

图11
 

        过程 在任何时候的方差 

图12

α存在漂移参数的连续情况下,预期值变为

图13
 

五、指数布朗运动(随机游走)过程

未知未来值的路径无关指数布朗运动(随机游走)过程采用以下形式

Figure 14

for regular options simulation, or a more generic version takes the form of

Figure 15

where

S0 = the variable’s today value (a.k.a starting value).

T = the forecast horizon (years).

ST = the variable’s future value years from today (a.k.a final value).

μ = 年化增长率或漂移率。

σ = 年化波动率。

ε = 来自标准化正态分布 Φ(0, 1) 的随机抽取。

为了从一组时间序列数据中估计参数,漂移率μ为相对回报的平均值

图16

σ是所有

图17

值。

六、蒙特卡罗模拟

蒙特卡罗模拟通常用于没有分析解且其他方法(如二项式树)不太合适的情况。

当用于预测股票的未来价值时,蒙特卡罗模拟使用真实世界的估值结果。现实世界的估值意味着股票的平均增长率必须高于无风险资产。因此,现实世界估值下的漂移率是股票的预期回报率,而风险中性估值/世界下的漂移率是无风险率。

我们对路径进行采样,以获得现实世界中的预期未来价值。考虑今天值为 S0 的股票 S,我们希望从今天起预测其未来价值 年。假设预期收益和波动率是恒定的,我们可以预测从今天起股票T年的未来价值如下:

  1. 在现实世界中对 S 的随机路径(也称为迭代)进行采样。
  2. 计算股票的未来价值。
  3. 重复步骤 1 和 2 以获取现实世界中股票未来价值的许多样本值。
  4. 计算样本未来值的平均值,以获得股票预期未来值的估计值。

假设现实世界中股票所遵循的未知未来价值的过程是

图18

七、Python中的指数布朗运动

        考虑一只起始值为 100、漂移率为 5%、年化波动率为 25% 和预测期限为 10 年的股票。让我们根据这些参数和称为指数布朗运动(随机游走)和漂移的随机过程来预测 10 年后的股票未来价值。

        由于我们希望运行与路径无关的模拟,因此我们将仅使用一个时间步长。最后,我们将在计算中使用 50,000 次迭代。

        因此,S0 = 100,T = 10.0,μ = 0.05,σ = 0.25,N=1,M = 50,000

        首先,让我们加载相关的 python 库用于数据科学。

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from numpy import random as rn
from scipy import stats
import scipy.stats as si
import seaborn as sns
G = 1629562571
np.random.seed(G) 
from datetime import datetime
# datetime object containing current date and time
now = datetime.now()
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")

        其次,让我们设置模型的参数。

S0 = 100
T = 10.0
μ = 0.05
σ = 0.25
M = 50000
N = 1
N

1

        第三,让我们为未来的值和随机绘图构建指标

ε = rn.randn(M,N)
S = S0*np.ones((M,N+1))
dt = T/N
dt

5

        第四,让我们构建模型

start_time = datetime.now() 
for i in range(0,N):S[:,i+1] = S[:,i]*np.exp( (μ-0.5*σ**2)*T + σ*ε[:,i]*np.sqrt(T) )

        第五,让我们可视化 8 条路径的模型结果

plt.figure(figsize=(13,7))
fontsize=15
plt.title('Path-Independent Monte Carlo Simulation - Exponential Brownian Motion with Drift',fontsize=fontsize)
plt.xlabel('Years',fontsize=fontsize)
plt.ylabel('Stock prices (USD)',fontsize=fontsize)
plt.grid(axis='y')
a = [ rn.randint(0,M) for j in range(1,8)]
for runer in a:plt.plot(np.arange(0,T+dt,dt), S[runer], 'red')
图 19
 第六  结果输出
V = (S[:,-1])
print("\033[1m The estimate of the future value of the stock is ${:.2f}".format(np.mean(V)))
print("\033[1m The accuracy of the estimate of the future value of the stock is ${:.2f}".format((np.std(V)/np.sqrt(M))))

股票未来价值的估计为 164.78
美元 股票未来价值估计的准确率为 0.69 美元

第七,让我们打印内在值属性输出

time_elapsed = datetime.now() - start_time
def NORMSINV(x):x = si.norm.ppf(x)return (x)
Workbook_Name = "Exponential Brownian Motion with Drift.ipynb"
Number_of_Steps = "{:,.0f}".format(N)
Number_of_Iterations = "{:,.0f}".format(M)
Number_of_Inputs = "{:,.0f}".format(6)
Number_of_Outputs = 1
Sampling_Type = "Latin Hypercube"
Simulation_Start_Time = dt_string
Simulation_Duration = '{}'.format(time_elapsed)
Random_N_Generator = 'Mersenne Twister'
e = ['Workbook Name','Number of Steps','Number of Iterations','Number of Inputs','Number of Outputs','Sampling Type',\'Simulation Start Time','Simulation Duration','Random # Generator']
f = [Workbook_Name, Number_of_Steps, Number_of_Iterations, Number_of_Inputs, Number_of_Outputs, Sampling_Type,\Simulation_Start_Time, Simulation_Duration, Random_N_Generator]
Per5 = "{:,.1f}".format(np.percentile(V, 5))
P5 = "{:.0%}".format(0.05)
Per10 = "{:,.1f}".format(np.percentile(V, 10))
P10 = "{:.0%}".format(0.10)
Per15 = "{:,.1f}".format(np.percentile(V, 15))
P15 = "{:.0%}".format(0.15)
Per20 = "{:,.1f}".format(np.percentile(V, 20))
P20 = "{:.0%}".format(0.20)
Per25 = "{:,.1f}".format(np.percentile(V, 25))
P25 = "{:.0%}".format(0.25)
Per30 = "{:,.1f}".format(np.percentile(V, 30))
P30 = "{:.0%}".format(0.30)
Per35 = "{:,.1f}".format(np.percentile(V, 35))
P35 = "{:.0%}".format(0.35)
Per40 = "{:,.1f}".format(np.percentile(V, 40))
P40 = "{:.0%}".format(0.40)
Per45 = "{:,.1f}".format(np.percentile(V, 45))
P45 = "{:.0%}".format(0.45)
Per50 = "{:,.1f}".format(np.percentile(V, 50))
P50 = "{:.0%}".format(0.50)
Per55 = "{:,.1f}".format(np.percentile(V, 55))
P55 = "{:.0%}".format(0.55)
Per60 = "{:,.1f}".format(np.percentile(V, 60))
P60 = "{:.0%}".format(0.60)
Per65 = "{:,.1f}".format(np.percentile(V, 65))
P65 = "{:.0%}".format(0.65)
Per70 = "{:,.1f}".format(np.percentile(V, 70))
P70 = "{:.0%}".format(0.70)
Per75 = "{:,.1f}".format(np.percentile(V, 75))
P75 = "{:.0%}".format(0.75)
Per80 = "{:,.1f}".format(np.percentile(V, 80))
P80 = "{:.0%}".format(0.80)
Per85 = "{:,.1f}".format(np.percentile(V, 85))
P85 = "{:.0%}".format(0.85)
Per90 = "{:,.1f}".format(np.percentile(V, 90))
P90 = "{:.0%}".format(0.90)
Per95 = "{:,.1f}".format(np.percentile(V, 95))
P95 = "{:.0%}".format(0.95)
Minimum = "{:,.1f}".format(np.min(V))
Maximum = "{:,.1f}".format(np.max(V))
Mean = "{:,.1f}".format(np.mean(V))
Std_Dev = "{:,.1f}".format(np.std(V))
Variance = int(np.var(V))
Std_Error = "{:,.1f}".format(np.std(V)/np.sqrt(M))
Skewness = round(stats.skew(V),9)
Kurtosis = round((stats.kurtosis(V)+3),9)
Median = "{:,.1f}".format(np.median(V))
Mode = "{:,.1f}".format(stats.mode(V)[0][0])
Left_X = Per5
Left_P = P5
Right_X = Per95
Right_P = P95
Diff_X = "{:,.1f}".format((np.percentile(V, 95) - np.percentile(V, 5)))
Diff_P = "{:.0%}".format(0.90)
Confidence_Level = P95
Lower_Bound = "{:,.1f}".format((np.mean(V) - (np.std(V)/np.sqrt(M))*NORMSINV(0.975)))
Upper_Bound = "{:,.1f}".format((np.mean(V) + (np.std(V)/np.sqrt(M))*NORMSINV(0.975)))
g = {'Information': e, 'Result': f}
st = pd.DataFrame(data=g)
a = ['Minimum','Maximum','Mean','Std Dev','Variance','Std Error', 'Skewness','Kurtosis','Median','Mode',\'Left X','Left P','Right X','Right P','Diff X','Diff P','Confidence Level','Lower 95.0%','Upper 95.0%']
b = [Minimum, Maximum, Mean, Std_Dev, Variance, Std_Error, Skewness, Kurtosis, Median, Mode, Left_X, Left_P,\Right_X, Right_P, Diff_X, Diff_P, Confidence_Level, Lower_Bound, Upper_Bound]
c = [P5,P10,P15,P20,P25,P30,P35,P40,P45,P50,P55,P60,P65,P70,P75,P80,P85,P90,P95]
d = [Per5, Per10, Per15, Per20, Per25, Per30, Per35, Per40, Per45, Per50, Per55, Per60, Per65,\Per70, Per75, Per80, Per85, Per90, Per95]
d = {'Statistics': a, 'Statistics Result': b, 'Percentile': c, 'Percentile Result': d}
st1 = pd.DataFrame(data=d)
from datetime import date
today = date.today()
now = datetime.now()
import calendar
curr_date = date.today()
print("\033[1m Simulation Summary Information")
print("\033[0m ================================================")
print("\033[1m Performed By:","\033[0mIntrinsic Value Team #1")
print("\033[1m Date:","\033[0m",calendar.day_name[curr_date.weekday()],",",today.strftime("%B %d, %Y"),",",now.strftime("%H:%M:%S AM"))
st

图20
print("\033[1m Summary Statistics for Future Value of Stock")
print("\033[0m ======================================================")
print("\033[1m Performed By:","\033[0mIntrinsic Value Team #1")
print("\033[1m Date:","\033[0m",calendar.day_name[curr_date.weekday()],",",today.strftime("%B %d, %Y"),",",now.strftime("%H:%M:%S AM"))
st1

图21
plt.figure(figsize = (4,4))
sns.set(font_scale = 1.2)
sns.set_style('white')
ax = sns.histplot(data=V,bins=50,color='red')
ax.set_xlabel('Values',fontsize=14)
ax.set_xlim( np.percentile(V, 0) , np.percentile(V, 99) )
print("\033[1m Probability Density Function for Future Value of Stock (Sim#1)")
print("\033[0m ======================================================")
print("\033[1m Performed By:","\033[0mIntrinsic Value Team #1")
print("\033[1m Date:","\033[0m",calendar.day_name[curr_date.weekday()],",",today.strftime("%B %d, %Y"),",",now.strftime("%H:%M:%S AM")

图22
plt.figure(figsize = (4,4))
kwargs = {'cumulative': True}
sns.set(font_scale = 1.2)
sns.set_style('white')
ax = sns.ecdfplot(V, color='red')
ax.set_xlabel('Values',fontsize=14)
ax.set_xlim( np.percentile(V, 0) , np.percentile(V, 99) )
print("\033[1m Cumulative Distribution Function for Future Value of Stock (Sim#1)")
print("\033[0m ======================================================")
print("\033[1m Performed By:","\033[0mIntrinsic Value Team #1")
print("\033[1m Date:","\033[0m",calendar.day_name[curr_date.weekday()],",",today.strftime("%B %d, %Y"),",",now.strftime("%H:%M:%S AM"))

图23

八、总结

        蒙特卡罗模拟涉及使用随机数对股票价格在现实世界中可能遵循的许多不同路径(迭代)进行采样。对于每个路径,将计算未来值。未来价值的算术平均值是股票的预测未来价值。

样本均值的标准误差通常用作模型精度水平的指示。由于此标准误差随着路径数量的增加而下降非常缓慢,因此通常需要使用数万条(甚至更多)的样本路径才能达到可接受的精度水平。

参考:

·

Python 中具有漂移过程的指数布朗运动(随机游走) |中等 (medium.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/109287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[当前就业]2023年8月25日-计算机视觉就业现状分析

计算机视觉就业现状分析 前言:超越YOLO:计算机视觉市场蓬勃发展 如今,YOLO(You Only Look Once)新版本的发布周期很快,每次迭代的性能都优于其前身。每 3 到 4 个月就会推出一个升级版 YOLO 变体&#xf…

​ 模拟嵌入式边缘计算卡设计方案:367-XC7Z100 板卡 基于zynq XC7Z100 FMC接口通用计算平台

基于zynq XC7Z100 FMC接口通用计算平台 一、板卡概述 北京太速科技板卡由SoC XC7Z100-2FFG900I芯片来完成卡主控及数字信号处理,XC7Z100内部集成了两个ARM Cortex-A9核和一个kintex 7的FPGA,通过PL端FPGA扩展FMC、光纤、IO等接口,PS端ARM扩展…

信看课堂笔记—LDO和DC-DC电路打PK

LDO(low dropout voltage regulator,低压差线性稳压器)和DC-DC(Direct current-Direct current converter,直流电压转直流电压转换器)电源是非常常见的电源电路,LDO 出来的比较早,像老戏骨一样,…

汽车电子笔记之:基于AUTOSAR的多核监控机制

目录 1、概述 2、系统监控的目标 2.1、任务的状态机 2.2、任务服务函数 2.3、任务周期性事件 2.4、时间监控的指标 2.5、时间监控的原理 2.6、CPU负载率监控原理 2.6.1、设计思路 2.6.2、监控方法的评价 3、基于WDGM模块热舞时序监控方法 3.1、活跃监督 3.2、截至时…

在VScode中执行npm、yarn命令报错解

在VScode中执行npm、yarn命令报错解 我使用的是vnm安装好npm,在WindowsR 界面是可以运行查看出版本的;但是在VScode中报错。 查了很多资料,我这种情况的原因是在VScode中默认使用的终端是Powershell,然后我切换到系统的cmd则可以…

springMVC之视图

文章目录 前言一、ThymeleafView二、转发视图三、重定向视图四、视图控制器view-controller五、补充总结 前言 SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户。 SpringMVC视图的种类很多,默认有转发视图和…

深度学习8:详解生成对抗网络原理

目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …

盖雅工场获评2023年度苏州市服务型制造示范企业(平台)

苏州市工信局公布 2023年度苏州市服务型制造示范企业(平台)名单 遴选出服务型制造示范企业34家 服务型制造示范平台19个 苏州盖雅信息技术有限公司 “劳动力管理SaaS云平台服务” 获评2023年度苏州市服务型制造示范平台 全市唯一获评的人力资源服务…

数据结构(Java实现)-包装类和泛型

包装类 在Java中,由于基本类型不是继承自Object,为了在泛型代码中可以支持基本类型,Java给每个基本类型都对应了 一个包装类型。 基本数据类型和对应的包装类 装箱和拆箱 装箱操作,新建一个 Integer 类型对象,将 i 的…

CSS基础选择器及常见属性

文章目录 一、CSS1、CSS简介2、CSS语法规范 二、CSS基础选择器1、选择器的作用2、选择器分类3、基础选择器标签选择器类选择器id选择器通配符选择器 三、CSS常见属性1、字体属性字体系列字体大小字体粗细文字样式 2、文本属性文本颜色对齐文本装饰文本文本缩进行间距 四、CSS引…

PHPEXCEL 导出excel

$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CENTER],];$border_style [borders > [allborders > [style > \PHPExcel_Style_Border::BORDER_THIN ,//细边框]]];$begin_date $request->beg…

设计模式-桥接模式

核心思想 适配器模式类似,以后也会遇到意思接近一样的设计模式。在开发中一般多个模式混用,且根据不同的场景进行搭配,桥接模式也是结构型模式将抽象的部分和实现的部分分离,使它们都可以独立的变化。通俗来说,就是通…

arcgis+postgresql+postgis使用介绍

关于arcgis在postgresql创建地理数据库我分享一下自己的经历: 众所周知,arcgis如果在oracle中创建地理数据库,必须要使用ArcToolbox里面的地理数据库工具去创建,在里面发现它还可以创建sql_server, postgresql数据库类型&#xf…

贪心算法:简单而高效的优化策略

在计算机科学中,贪心算法是一种简单而高效的优化策略,用于解决许多组合优化问题。虽然它并不适用于所有问题,但在一些特定情况下,贪心算法能够产生近似最优解,而且计算成本较低。在本文中,我们将深入探讨贪…

Oracle监听器启动出错:本地计算机上的OracleOraDb11g_home1TNSListener服务启动后又停止了解决方案

在启动oracle的服务OracleOraDb11g_home1TNSListener时,提示服务启动后又停止了。 解决方法: 修改oracle安装目录下的两个配置文件: 以上两个文件,对应的HOST的值,都改为127.0.0.1 然后再启动服务,启动成…

f4v如何格式转换mp4格式?分享几种好用转换方法

为了使视频文件格式更加通用,更容易在不同设备和平台上播放,需要将F4V格式转换为MP4格式。F4V是Adobe Flash Player使用的一种视频文件格式,而MP4格式是一种更通用的视频文件格式,几乎所有设备和平台都支持它。此外,MP…

【Apollo】阿波罗自动驾驶系统:驶向未来的智能出行(含源码安装)

前言 Apollo (阿波罗)是一个开放的、完整的、安全的平台,将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统,快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、…

npm install sentry-cli失败的问题

1. 目前报错 2. 终端运行 npm set ENTRYCLI_CDNURLhttps://cdn.npm.taobao.org/dist/sentry-cli npm set sentrycli_cdnurlhttps://cdn.npm.taobao.org/dist/sentry-cli3. 再安装 npx sentry/wizardlatest -i nextjs即可成功

PL端案例开发手册

目 录 前 言 1 工程编译、程序加载方法 1.1 工程编译 1.2 程序加载 2 led-flash 2.1 案例说明 2.2 操作说明 2.3 关键代码 更多帮助 前 言 本文主要介绍PL端案例的使用说明,适用开发环境:Windows 7/10 64bit、Xilinx Unified 20…

Flink流批一体计算(16):PyFlink DataStream API

目录 概述 Pipeline Dataflow 代码示例WorldCount.py 执行脚本WorldCount.py 概述 Apache Flink 提供了 DataStream API,用于构建健壮的、有状态的流式应用程序。它提供了对状态和时间细粒度控制,从而允许实现高级事件驱动系统。 用户实现的Flink程…