9.4 集成功率放大电路

OTL、OCL 和 BTL 电路均有各种不同输出功率和不同电压增益的集成电路。应当注意,在使用 OTL 电路时,需外接输出电容。为了改善频率特性,减小非线性失真,很多电路内部还引入深度负反馈。这里以低频功放为例。

一、集成功率放大电路的分析

1、LM386 内部电路

LM386 内部电路原理图如图9.4.1所示,与通用型集成运放相类似,它是一个三级放大电路,如点划线所划分。

在这里插入图片描述
第一级为差分放大电路, T 1 T_1 T1 T 3 T_3 T3 T 2 T_2 T2 T 4 T_4 T4 分别构成复合管,作为差分放大电路的放大管; T 5 T_5 T5 T 6 T_6 T6 组成的镜像电流源作为 T 1 T_1 T1 T 2 T_2 T2 的有源负载;信号从 T 3 T_3 T3 T 4 T_4 T4 管的基极输入,从 T 2 T_2 T2 管的集电极输出,为双端输入单端输出差分电路。镜像电流源作为差分放大电路有源负载,使单端输出电路的增益近似等于双端输出电路的增益。
第二级为共射放大电路, T 7 T_7 T7 为放大管,恒流源作为有源负载,以增大放大倍数。
第三级中的 T 8 T_8 T8 T 9 T_9 T9 管复合成 PNP 型管,与 NPN 型管 T 10 T_{10} T10 构成准互补输出级。二极管 D 1 D_1 D1 D 2 D_2 D2 为输出级提供合适的偏置电压,可以消除交越失真。
利用瞬时极性法可以判断出,引脚 2 为反相输入端,引脚 3 为同相输入端。电路由单电源供电,固为 OTL 电路。输出端(引脚 5 )应外接输出电容后再接负载。
电阻 R 7 R_7 R7 从输出端连接到 T 2 T_2 T2 的发射极,形成反馈通路,并与 R 5 R_5 R5 R 6 R_6 R6 构成反馈网络,从而引入了深度电压负反馈,使整个电路具有稳定的电压增益。
应当指出,在引脚 1 和 8(或者 1 和 5)外接电阻时,应只改变交流通路,所以必须在外接电阻回路中串联一个大容量电容,如图9.4.1中所示。外接不同阻值的电容式,电压放大倍数的调节范围为 20 ∼ 200 20\sim200 20200,即电压增益的调节范围为 26 ∼ 46 dB 26\sim46\,\textrm{dB} 2646dB

2、LM386 的引脚图

LM386 的外形和引脚的排列如图9.4.2所示。

在这里插入图片描述
引脚 2 为反相输入端,3 为同相输入端;引脚 5 为输出端;引脚 6 和 4 分别为电源和地;引脚 1 和 8 为电压增益设定端;使用时在引脚 7 和地之间接旁路电容,通常取 10 μF 10\,\textrm{μF} 10μF

二、集成功率放大电路的主要性能指标

集成功率放大电路的主要性能指标有最大输出功率、电源电压范围、电源静态电流、电压增益、频带宽、输入阻抗、输入偏置电流、总谐波失真等。
LM386 - 1 和 LM386 - 3 的电源电压为 4 ∼ 12 V 4\sim12\,\textrm V 412V,LM386 - 4 的电源电压为 5 ∼ 18 V 5\sim18\,\textrm V 518V。因此,对于同一负载,当电源电压不同时,最大输出功率的数值将不同;当然,对于同一电源电压,当负载不同时,最大输出功率的数值也将不同。已知电源的静态电流(可查阅手册)和负载电流最大值(通过最大输出功率和负载可求出),可求出电源的功耗,从而得到转换效率。
几种典型产品的性能如表9.4.1所示。 表 1 几种集成功放的主要参数 表1\, 几种集成功放的主要参数 1几种集成功放的主要参数

型号LM386 - 4LM2877TDA1514ATDA1556
电路类型OTLOTL(双通道)OCLBTL(双通道)
电源电压范围/V5.0 ~ 186.0 ~ 24±10 ~ ±306.0 ~ 18
静态电源电流/mA4255680
输入阻抗/kΩ501000120
输出功率/W1( V C C = 16 V V_{\scriptscriptstyle{CC}}=16 \,\textrm V VCC=16V R L = 32 Ω \\R_L=32\,Ω RL=32Ω4.548( V C C = ± 23 V V_{CC}=±23\,\textrm V VCC=±23V R L = 4 Ω \\R_L=4\,Ω RL=4Ω22( V C C = 14.4 V V_{CC}=14.4\,\textrm V VCC=14.4V R L = 4 Ω \\R_L=4\,Ω RL=4Ω
电压增益/dB26 ~ 4670(开环) \, 89(开环) \\\, 30(闭环)26(闭环)
频带宽/kHz300 \\\, (1,8开路)0.02 ~ 250.02 ~ 15
增益频带宽积/kHz65
总谐波失真/%(或 dB)0.2%0.07%-90 dB0.1%

表9.4.1中的电压增益均在信号频率为 1 kHz 1\,\textrm{kHz} 1kHz 条件下测试所得。应当指出,表中所示均为典型数据,使用时应进一步查阅手册,以便获得更确切的数据。

三、集成功率放大电路的应用

1、集成 OTL 电路的应用

图9.4.3所示为 LM386 的一种基本用法,也是外接元件最少的一种用法, C 1 C_1 C1 为输出电容。由于引脚 1 和 8 开路,集成功放的电压增益为 26 dB,即电压放大倍数为 20。利用 R w R_w Rw 可调节扬声器的音量。 R R R C 2 C_2 C2 串联构成校正网络用来进行相位补偿。

在这里插入图片描述
静态时输出电容上电压为 V C C / 2 V_{CC}/2 VCC/2,LM386 的最大不失真输出电压的峰 - 峰值约为电源电压 V C C V_{CC} VCC。设负载电阻为 R L R_L RL,最大输出功率表达式为 P o m ≈ ( V C C / 2 2 ) 2 R L = V C C 2 8 R L ( 9.4.1 ) P_{om}\approx\frac{\Big(\displaystyle\frac{V_{CC}/2}{\sqrt2}\Big)^2}{R_L}=\frac{V^2_{CC}}{8R_L}\kern 40pt(9.4.1) PomRL(2 VCC/2)2=8RLVCC2(9.4.1)此时的输入电压有效值的表达式为 U i m = V C C 2 / 2 A u ( 9.4.2 ) U_{im}=\frac{\displaystyle\frac{V_{CC}}{2}/\sqrt2}{A_u}\kern 40pt(9.4.2) Uim=Au2VCC/2 (9.4.2) V C C = 16 V V_{CC}=16\,\textrm V VCC=16V R L = 32 Ω R_L=32\,Ω RL=32Ω 时, P o m ≈ 1 W P_{om}\approx1\,\textrm W Pom1W U i m ≈ 283 mV U_{im}\approx283\,\textrm {mV} Uim283mV
图9.4.4所示为 LM386 电压增益最大时的用法, C 3 C_3 C3 使引脚 1 和 8 在交流通路中短路,使 A u ≈ 200 A_u\approx200 Au200 C 4 C_4 C4 为旁路电容; C 5 C_5 C5 为去耦电容,滤掉电源的高频交流成分。当 V C C = 16 V V_{CC}=16\,\textrm V VCC=16V R L = 32 Ω R_L=32\,\textrm Ω RL=32Ω 时,与图9.4.3所示电路相同, P o m P_{om} Pom 仍约为 1 W 1\,\textrm W 1W;但输入电压的有效值 U i m U_{im} Uim 却仅需 28.3 mV 28.3\,\textrm{mV} 28.3mV
在这里插入图片描述
图9.4.5所示为 LM386 的一般用法,图中利用 R 2 R_2 R2 改变 LM386 的电压增益。

在这里插入图片描述

2、集成 OCL 电路的应用

图9.4.6所示为 TDA1521 的基本用法。TDA1521 为 2 通道 OCL 电路,可作为立体声扩音机左右两个声道的功放。其内部引入了深度电压串联负反馈,闭环电压增益为 30 dB,并具有待机、净噪功能以及短路和过热保护等。

在这里插入图片描述
查阅手册可知,当 ± V C C = ± 16 V ±V_{CC}=±16\,\textrm V ±VCC=±16V R L = 8 Ω R_L=8\,\textrm Ω RL=8Ω 时,若要求总谐波失真为 0.5 % 0.5\% 0.5%,则 P o m ≈ 12 W P_{om}\approx12\,\textrm W Pom12W。由于最大输出功率的表达式为 P o m = U o m 2 R L P_{om}=\frac{U^2_{om}}{R_L} Pom=RLUom2可得最大不失真输出电压 U o m ≈ 9.8 V U_{om}\approx9.8\,\textrm V Uom9.8V,其峰值约为 13.9 V 13.9\,\textrm V 13.9V,可见功放内部压降的最小值约为 2.1 V 2.1\,\textrm V 2.1V。当输出功率为 $P_{om} $ 时,输入电压有效值 U i m ≈ 310 mV U_{im}\approx310\,\textrm {mV} Uim310mV

3、集成 BTL 电路的应用

TDA1556 为 2 通道 BTL 电路,与 TDA1521 相同,也可作为立体声扩音机左右两个声道的功放,图9.4.7所示为其基本用法,两个通道的组成完全相同。TDA1556内部具有待机、净噪功能,并有短路、电压反向、过电压、过热和扬声器保护等。

在这里插入图片描述
TDA1556 内部的每个放大电路的电压放大倍数均为10,当输入电压为 U i U_i Ui 时, A 1 A_1 A1 的净输入电压 U ˙ i 1 = U ˙ p 1 − U ˙ p 2 = U ˙ i \dot U_{i1}=\dot U_{p1}-\dot U_{p2}=\dot U_i U˙i1=U˙p1U˙p2=U˙i U ˙ o 1 = A ˙ u 1 U ˙ i \dot U_{o1}=\dot A_{u1}\dot U_{i} U˙o1=A˙u1U˙i A 2 A_2 A2 的净输入电压 U ˙ i 2 = U ˙ p 2 − U ˙ p 1 = − U ˙ i \dot U_{i2} = \dot U_{p2}-\dot U_{p1}=-\dot U_i U˙i2=U˙p2U˙p1=U˙i U ˙ o 2 = − A ˙ u 2 U ˙ i \dot U_{o2}=-\dot A_{u2}\dot U_i U˙o2=A˙u2U˙i;因此,电压放大倍数 A ˙ u = U ˙ o U ˙ i = U ˙ o 1 − U ˙ o 2 U ˙ i = A ˙ u 1 U ˙ i − ( − A ˙ u 2 U ˙ i ) U ˙ i = 2 A ˙ u 1 = 20 \dot A_u=\frac{\dot U_o}{\dot U_i}=\frac{\dot U_{o1}-\dot U_{o2}}{\dot U_i}=\frac{\dot A_{u1}\dot U_i-(-\dot A_{u2}\dot U_i)}{\dot U_i}=2\dot A_{u1}=20 A˙u=U˙iU˙o=U˙iU˙o1U˙o2=U˙iA˙u1U˙i(A˙u2U˙i)=2A˙u1=20电压增益 20 lg ⁡ ∣ A ˙ u ∣ ≈ 26 dB 20\lg|\dot A_u|\approx26\,\textrm{dB} 20lgA˙u26dB
为了使最大不失真输出电压的峰值接近电源电压 V C C V_{CC} VCC,应设置放大电路同相输入端和反相输入端的静态电位均为 V C C / 2 V_{CC}/2 VCC/2,输出端静态电位也为 V C C / 2 V_{CC}/2 VCC/2,因此内部提供的基准电压 U R E F U_{REF} UREF V C C / 2 V_{CC}/2 VCC/2。当 u i u_i ui 由零逐渐增大时, u O 1 u_{\scriptscriptstyle O1} uO1 V C C / 2 V_{CC}/2 VCC/2 逐渐增大, u O 2 u_{\scriptscriptstyle O2} uO2 V C C / 2 V_{CC}/2 VCC/2 逐渐减小;当 u i u_i ui 增大到峰值时, u O 1 u_{\scriptscriptstyle O1} uO1 达到最大值, u O 2 u_{\scriptscriptstyle O2} uO2 达到最小值,负载上电压可接近 + V C C +V_{CC} +VCC。同理,当 u i u_i ui 由零逐渐减小时, u O 1 u_{\scriptscriptstyle O1} uO1 u O 2 u_{\scriptscriptstyle O2} uO2 的变化与上述过程相反;当 u i u_i ui 减小到负峰值时, u O 1 u_{\scriptscriptstyle O1} uO1 达到最小值, u O 2 u_{\scriptscriptstyle O2} uO2 达到最大值,负载上电压可接近 − V C C -V_{CC} VCC。因此,最大不失真输出电压的峰值可接近电源电压 V C C V_{CC} VCC
查阅手册可知,当 V C C = 14.4 V V_{CC}=14.4\,\textrm V VCC=14.4V R L = 4 Ω R_L=4\,\textrm Ω RL=4Ω 时,若总谐波失真为 0.1 % 0.1\% 0.1%,则 P O M ≈ 22 W P_{OM}\approx22\,\textrm W POM22W。最大不失真输出电压 U o m ≈ 9.38 V U_{om}\approx9.38\,\textrm V Uom9.38V,其峰值约为 13.3 V 13.3\,\textrm V 13.3V,因而内部放大电路压降的最小值约为 1.1 V 1.1\,\textrm V 1.1V。为了减小非线性失真,应增大内部放大电路压降的最小值,当然势必减小电路的最大输出功率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/109812.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity编辑器扩展:提高效率与创造力的关键

Unity编辑器扩展:提高效率与创造力的关键 前言 一、理解Unity编辑器二、扩展Unity编辑器的意义三、扩展Unity编辑器的必要性四、Unity编辑器的扩展方式五、扩展Unity编辑器的步骤六、Unity编辑器扩展的应用案例七、总结 前言 Unity是一款广泛使用的游戏开发引擎&am…

机器学习十大算法之七——随机森林

0 引言 集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个横型,集成所有模型的建模结果,基本上所有的机器学习领域都可以看到集成学习…

前端将file文件传给后台,后台将文件传给前台(包含上传下载)

前端将file文件传给后台,后台将文件传给前台(包含上传下载) 在开发过程中,经常会遇见对文件的处理。 例如:在上传、下载文件时,需要在前端选完文件传到后台传到服务器;或者文件从后台&#xf…

RTSP/Onvif协议安防视频平台EasyNVR录像模式自定义操作

TSINGSEE青犀视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif流媒体协议接入,并能对接入的视频流进行处理与多端分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。在智慧安防等视频监控场景中,EasyNVR可提供视频实时监控直播…

linux并发服务器 —— 动态库和静态库实战(一)

-E 预处理指定源文件 -S 编译指定源文件 -c 汇编指定源文件 -o 生成可执行文件 -I directory 指定Include包含文件的搜索目录 -g 编译的时候生成调试信息 -D 在程序编译时指定一个宏 -w 不生成任何的警告信息 -Wall 生成所有警告 -On n:0~3;表示编译器的优…

pip install bz2 和readline失败

python3.7.5 在跑模型时报错找不到bz2,使用pip install bz2 安装失败 bz2和readline应该是python自带的包 解决方案:重新编译安装python3.7.5,参考: https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/70RC1alpha002/softwareinstall/…

Android工具条

在底层,所有通过主题得到应用条的活动都使用ActionBar类实现它的应用条。不过最新的应用条特性已经增加到AppCompat支持库中的Toolbar类。这意味着,如果你想在应用中使用最新的应用条特性,就需要使用支持库中的ToolBar类。 如何增加工具条 1…

❤ windows 安装后台java开发环境JDK 、MySQL 、Redis

❤ windows 安装后台java开发环境 1、windows 安装 JDK. 下载地址: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 1、下载安装 官网点击下载安装 网盘 jdk安装包 链接:https://pan.baidu.com/s/1sdxA6B…

Linux学习之DNS服务的原理

DNS服务一些理论 域名系统(Domain Name System,DNS)是互联网的核心应用服务,可以通过IP地址查询到域名,也可以通过域名查询到IP地址。 FQDN(Full Qualified Domain Name)是完全限定域名&#xf…

【ES6】—【新特性】—Symbol详情

一、一种新的原始数据类型 定义:独一无二的字符串 二、 声明方式 1. 无描述声明 let s1 Symbol() let s2 Symbol() console.log(s1, s2) // Symbol() Symbol() console.log(s1 s2) // falsePS: Symbol 声明的值是独一无二的 2. 有描述的声明 let s1 Symb…

【如何对公司网络进行限速?一个案例详解】

有不少朋友问到了关于企业网络QoS配置,这个确实在实际网络应用中非常多,基本上大部分企业或个人都用到这个功能,本期我们详细了解下QoS如何对宽带进行限制,QoS如何企业中应用。 一、什么是QoS? Qos是用来解决网络延迟和阻塞等问…

【微信红包】Axure聊天发红包原型图,含流程图和PRD产品文档

作品概况 页面数量:共 60 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:聊天软件、社交软件 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为「发红包」的原型设计图&#xff0c…

为什么网络互联地址设置为30位地址

对于点对点链路,为了节约IPv4地址,一般为其分配/30地址块,这样包含4个地址:最小地址作为网络地址,最大地址作为广播地址,剩余两个可分配地址,分配给链路两端的接口,这是最普遍的方法…

《网络是怎样连接的》(五)

本文主要取材于 《网络是怎样连接的》 第五章。 目录 5.1 Web服务器的部署地点 5.2 防火墙的结构和原理 5.3服务器负载平衡 5.4 使用缓存服务器分担负载 5.5 内容分发服务 简述:本文主要内容是解释 网络包如何朝服务器前进,并通过服务器前面的防…

php_webshell免杀--从0改造你的AntSword

0x00 前言: 为什么会有改造蚁剑的想法,之前看到有做冰蝎的流量加密,来看到绕过waf,改造一些弱特征,通过流量转换,跳过密钥交互。 但是,冰蝎需要反编译去改造源码,再进行修复bug&am…

pytorch中torch.gather()简单理解

1.作用 从输入张量中按照指定维度进行索引采集操作,返回值是一个新的张量,形状与 index 张量相同,根据指定的索引从输入张量中采集对应的元素。 2.问题 该函数的主要问题主要在dim维度上,dim0 表示沿着第一个维度(行…

【算法日志】动态规划刷题:完全背包应用问题(day39)

代码随想录刷题60Day 目录 前言 零钱兑换 完全平方数 前言 今天重点是对完全背包问题进一步了解&#xff0c;难度不大&#xff0c;重点是区分与其他背包问题在初始和遍历上的一些细节。 零钱兑换 int coinChange(vector<int>& coins, int amount) {if (!amount)re…

linux————keepalived+LVS(DR模式)

一、作用 使用keepalived解决LVS的单点故障 高可用集群 二、 调度器配置 环境 两台LVS服务 一主一备 两台web服务 采用nginx &#xff08;实现LVS负载均衡&#xff09; 服务ip 主LVS 192.168.100.3 备LVS 192.168.100.6 web1 192.…

docker在阿里云上的镜像仓库管理

目录 一.登录进入阿里云网站&#xff0c;点击个人实例进行创建 二.创建仓库&#xff0c;填写相关信息 三.在访问凭证中设置固定密码用于登录&#xff0c;登录时用户名是使用你注册阿里云的账号名称&#xff0c;密码使用设置的固定密码 四.为镜像打标签并推送到仓库 五.拉取…

xsschallenge通关(11-15)

level 11 老规矩&#xff0c;先查看源码&#xff0c;做代码审计&#xff1a; <?php ini_set("display_errors", 0); $str $_GET["keyword"]; $str00 $_GET["t_sort"]; $str11$_SERVER[HTTP_REFERER]; $str22str_replace(">&quo…