摄像头的调用和视频识别

CV_tutorial3

  • 摄像头调用
    • +实时播放
    • +保存视频
  • 运动目标识别
    • 帧差法
    • 背景减除法

摄像头调用

创建视频捕捉对象:cv2.VideoCapture()
参数为视频设备的索引号,就一个摄像投的话写0默认;
或者是指定要读取视频的路径。

+实时播放

import cv2
import numpy as npcap = cv2.VideoCapture(0) 
# 创建循环结构连续按帧读取视频
while (True):# ret返回布尔值,frame三维矩阵(每一帧的图像)ret, frame = cap.read()# 并展示cv2.imread('frame', frame)# 按下‘q’键退出循环if cv2.waitKey(1) && 0xFF ==ord('q'):break
cap.release() # 释放资源
cv2.destroyAllWindows()

+保存视频

cv2.VideoWriter()

import cv2cap = cv2.VideoCapture(0)#创建编码方式
# mp4:'X','V','I','D'
# avi:'M','J','P','G'或'P','I','M','1' 
# flv:'F','L','V','1'
fourcc = cv2.VideoWriter_fourcc('X','V','I','D')# 创建VideoWriter对象
out = cv2.VideoWriter('ouput_1.mp4', fourcc, 20.0, (640, 480)) # 播放帧率,大小
# 创建循环结构进行连续读写
while(cap.isOpened()):ret, frame = cap.read()if ret == True:out.write(frame)cv2.imshow('frame', frame)if cv2.waitKey(1) && 0xFF == ord('q'):breakelse:break
cap.release()
out.release()
cv2.destryAllWindows()

运动目标识别

帧差法

通过对视频中相邻两帧图像做差分运算来标记运动物体,
移动的物体在相邻帧中灰度会有差别,因此差值为0的是静态物体。

import cv2
camera = cv2.VideoCapture("move_detect.flv")out_fps = 12.0 # 输出文件的帧率
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', '2') # 创建编码方式
# 创建VideoWriter对象
out1 = cv2.VideoWriter('v1.avi', fourcc, out_fps, (500, 400))
out2 = cv2.VideoWriter('v2.avi', fourcc, out_fps, (500, 400))# 初始化
lastFrame = None# 创建循环结构进行连续读写
while camera.isOpened():ret, frame = camera.read()# 如果不能抓取到一帧,说明到了视频的结尾if not ret:break# 调整该帧大小frame = cv2.resize(frame, (500, 400), interpolation = cv2.INTER_CUBIC)# 如果第一帧是None,对其初始化if lastFrame == None:lastFrame = framecontinue# 求帧差frameDelta = cv2.absdiff(lastFrame, frame)lastFrame = frame'''阈值化,留下轮廓'''thresh = cv2.cvtColor(frameDelta, cv2.COLOR_BGR2GRAY) # 灰度图thresh = cv2.threshold(thresh, 25, 255, cv2.THRESH_BINARY)[1] # 二值化# 阈值图像上的轮廓位置cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历轮廓for c in cnts:# 忽略小轮廓,可能运动的小鸟之类的,排除误差if cv2.contourArea(c) < 300:continue# 画轮廓边界框(x, y, w, h) = cv2.boundingRect(c)cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)# 展示当前帧cv2.imshow("frame", frame)cv2.imshow("frameDelta", frameDelta)cv2.imshow("thresh", thresh)# 保存视频out1.write(frame)out2.write(frameDelta)if cv2.waitKey(20) && 0xFF == ord('q'):break
# 资源释放
out1.release() 
out2.release() 
camera.release() 
cv2.destroyAllWindows()

在这里插入图片描述
飘动的彩带也被捕捉到了,但是去误差,没有标小轮廓;
行人前后帧(运动)幅度小的也没被发现(框定)。

背景减除法

对视频的背景进行建模,实现背景消除,生成mask图像,通过对mask二值图像分析实现对前景活动对象的区域的提取。

  1. 初始化背景建模对象GMM
  2. 读取视频一帧
  3. 使用背景建模消除生成mask
  4. 对mask进行轮廓分析图区ROI(region of interest)
  5. 绘制ROI对象
import numpy as np
import cv2# read the video
camera = cv2.VideoCapture('move_detect.flv')
# 创建背景减除对象
fgbg = cv2.createBackgroundSubstractorMOG2(history = 500, varThreshold = 100, detectShadows = False)def getPerson(image, opt=1):# 获取前景maskmask = fgbg.apply(frame)'''去噪'''# 创建一个矩形形状的结构元素,用于形态学操作,如腐蚀(erosion)和膨胀(dilation)line = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 5), (-1, -1))mask = cv2.morphologyEx(mask, cv2.MORPG_OPEN, line)cv2.imshow('mask', mask) # 画出轮廓并忽略小于阈值的轮廓contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for c in contours:area = cv2.contourArea(c)if area < 150:continuerect = cv2.minAreaRect(c) # 返回一个具有最小面积的矩形cv2.ellipse(image, rect, (0, 0, 255), 2, 8)cv2.circle(image, (np.int32(rect[0][0]), np.int32(rect[0][1])), 2, (0, 0, 255), 2, 8, 0) # 取矩形中心点作为圆心return image, maskwhile True:ret, frame = camera.read()res, m_ = getPerson(frame) # Python中使用下划线作为占位符变量名是一种惯例。它也可以用来忽略函数的返回值或迭代中的某些值,以避免产生未使用变量的警告cv2.imshow('res', res)if cv2.waitKey(20) && 0xFF == ord('q'):break
# 资源释放
camera.release() 
cv2.destroyAllWindows()

图像论1帧,连续帧就成了视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111651.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华硕笔记本摄像头倒置怎么办?华硕笔记本摄像头上下颠倒怎么调整

笔记本电脑相较于台式电脑&#xff0c;更易携带&#xff0c;解决了很大一部分人的使用需求。但是笔记本电脑也存在很多不足&#xff0c;比如华硕笔记本电脑就经常会出现摄像头倒置的错误&#xff0c;出现这种问题要如何修复呢&#xff1f;下面就来看看详细的调整方法。 华硕笔记…

十二、集合(2)

本章概要 添加元素组集合的打印列表 List 添加元素组 在 java.util 包中的 Arrays 和 Collections 类中都有很多实用的方法&#xff0c;可以在一个 Collection 中添加一组元素。 Arrays.asList() 方法接受一个数组或是逗号分隔的元素列表&#xff08;使用可变参数&#xff…

【STM32】学习笔记-江科大

【STM32】学习笔记-江科大 1、STM32F103C8T6的GPIO口输出 2、GPIO口输出 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口可配置为8种输入输出模式引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V输出模式下可控制端口输出高低电平&#…

【GPT,Flask】用Python Flask结合OpenAI的GPT API构建一个可自主搭建的内容生成应用网站

【背景】 自己构建模型并进行训练需要很高的知识,技能和资源门槛。如今,通过OpenAI提供的API,则可以快速通过GPT能力构建可以提供内容生成服务的在线网站。这套框架可以提供给用户,用户可以利用该框架在自己的环境(比如自己的公司内)构建内容生成服务。你也可以自己上线…

以“迅”防“汛”!5G视频快线筑牢防汛“安全堤”

近期&#xff0c;西安多地突发山洪泥石流灾害。防洪救灾刻不容缓&#xff0c;为进一步做好防汛工作&#xff0c;加强防洪调度监管&#xff0c;切实保障群众的生命财产安全&#xff0c;当地政府管理部门亟需拓展智能化技术&#xff0c;通过人防技防双保障提升防灾救灾应急处置能…

Python基础小讲堂之条件分支与循环

万丈高楼平地起&#xff0c;今天给大家讲讲python中的&#xff1a;条件分支与循环。在学条件分支与循环之前&#xff0c;先掌握一下python的基本操作符。算术操作符&#xff1a; - * / % ** //对于算数操作符的前四个加减乘除&#xff0c;大家都懂&#xff0c;在py…

趣解建造者模式之网红小王购车记

一、前言 本文章是关于设计模式中的建造者模式的&#xff0c;也称构建者模式/生成器模式&#xff0c;英文我们称之为Builder Pattern。在开展讲解之前&#xff0c;我们先把该模式的定义了解一下。 建造者模式的定义&#xff1a; 该模式可以实现产品的封装构造过程&#xff0c…

浅谈视频汇聚平台EasyCVR中AI中台的应用功能

AI中台是将人工智能技术如深度学习、计算机视觉、知识图谱、自然语言理解等模块化&#xff0c;集约硬件的计算能力、算法的训练能力、模型的部署能力、基础业务的展现能力等人工智能能力&#xff0c;结合中台的数据资源&#xff0c;封装成整体中台系统。 在EasyCVR视频共享融合…

【AI】数学基础——高数(积分部分)

高数&#xff08;函数&微分部分&#xff09; 文章目录 1.4 微积分1.4.1 基本思想1.4.2 定积分定义定义计算定积分定积分性质定理N-L公式泰勒公式麦克劳林公式 1.5 求极值1.5.1 无条件极值1.5.2 条件极值1.5.3 多条件极值1.5.4 凹函数与凸函数 1.4 微积分 用于求解速度、面积…

vue3+ts+tinynce富文本编辑器+htmlDocx+file-saver 配合实现word下载

vue3 请下载html-docx-js-typescript&#xff0c;否则会报错类型问题 //报告导出word import * as htmlDocx from "html-docx-js-typescript";//ts-ignore import { saveAs } from file-saver// 下载文件&#xff0c; const downloadFile (row)> {try {const co…

得物一面,场景题问得有点多!

题目来源&#xff1a;https://www.nowcoder.com/discuss/525371909735792640 前文 本期是【捞捞面经】系列文章的第 1 期&#xff0c;持续更新中…。 《捞捞面经》系列正式开始连载啦&#xff0c;据说看了这个系列的朋友都拿到了大厂offer~ 欢迎星标订阅&#xff0c;持续更新…

服务器端使用django websocket,客户端使用uniapp 请问服务端和客户端群组互发消息的代码怎么写的参考笔记

2023/8/29 19:21:11 服务器端使用django websocket,客户端使用uniapp 请问服务端和客户端群组互发消息的代码怎么写 2023/8/29 19:22:25 在服务器端使用Django WebSocket和客户端使用Uniapp的情况下&#xff0c;以下是代码示例来实现服务器端和客户端之间的群组互发消息。 …

Redis——》Pipeline

推荐链接&#xff1a; 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

15-mongodb

一、 MongoDB 简介 1 什么是 MongoDB MongoDB 是一个基于分布式文件存储的数据库。由 C语言编写。在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系…

ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI 在我们原始的幻想⾥&#xff0c;AI是基于对海量数据的学习&#xff0c;锻炼出⼀个⽆所不知⽆所不能的模 型&#xff0c;并借助计算机的优势&#xff08;计算速度、并发可能&#xff09;等碾压⼈类。 但我们⽬前的AI&#xff0c;不管是AlphaGo还是图像识别算法&am…

生活类书单视频如何做?几个步骤轻松拿捏

生活类书单视频是一种很受欢迎的内容形式&#xff0c;它可以帮助观众了解各种生活类书籍&#xff0c;并提供一些有用的信息。在制作生活类书单视频时&#xff0c;我们需要注意几个步骤&#xff0c;以确保视频内容的质量和专业性。 首先&#xff0c;我们需要选择适合的书单背景。…

R语言绘图相关函数(含实例)

目录 plot:可用于创建多种类型的图形 dev.new():新建画板 hist&#xff1a;绘制直方图 dotchart&#xff1a;绘制点图的函数 pie:绘制饼图 pair&#xff1a;绘制散点图矩阵 boxplot&#xff1a;绘制箱线图 scatterplot3D&#xff1a; 绘制三维散点图 par&#xff1a;修…

Maven导入包

有些时候maven导入不进去包&#xff0c;这个时候可以去直接去maven仓库找到你需要的包 https://mvnrepository.com/ 在自己本地输入命令 &#xff08;这只是一个样例&#xff0c;请根据自己需要的包参考&#xff09; mvn install:install-file -Dfile"C:/Users//Downloa…

【Docker】Docker网络与存储(三)

前言&#xff1a; Docker网络与存储的作用是实现容器之间的通信和数据持久化&#xff0c;以便有效地部署、扩展和管理容器化应用程序。 文章目录 Docker网络桥接网络容器之间的通信 覆盖网络创建一个覆盖网络 Docker存储卷 总结 Docker网络 Docker网络是在容器之间提供通信的机…

Java之SpringCloud Alibaba【五】【微服务 Sentinel整合openfeign进行降级】

一、Sentinel整合openfeign 1、复制一下order-openfeign项目&#xff08;创建order-openfeign-sentinel&#xff09; 然后在stock-nacos当中编写对应的接口 RequestMapping("/reduct2")public String reduct2(){int a 1/0;System.out.println("扣减库存"…