python-数据可视化-下载数据-CSV文件格式

数据以两种常见格式存储:CSVJSON

CSV文件格式

comma-separated values

import csv
filename = 'sitka_weather_07-2018_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)print(header_row)
# ['USW00025333', 'SITKA AIRPORT, AK US', '2018-01-01', '0.45', '', '48', '38']for index, column_header in enumerate(header_row):# 打印文件位置和文件头print(index, column_header)

0 USW00025333
1 SITKA AIRPORT, AK US
2 2018-01-01
3 0.45
4
5 48
6 38

csv.reader():将前面存储的文件对象作为实参传递给它,创建一个与该文件相关联的阅读器对象

next()返回文件中的下一行
第一次调用该函数,返回第一行,依次增加

enumerate()函数可以将一个可迭代对象转换为一个枚举对象,返回的枚举对象包含每个元素的索引和对应的元素值

enumerate(iterable, start=0)
  • iterable:必需,表示要枚举的可迭代对象
  • start:可选,表示元素索引的起始值

[‘STATION’, ‘NAME’, ‘DATE’, ‘PRCP’, ‘TAVG’, ‘TMAX’, ‘TMIN’]

STATION 记录数据的气象站的编码
NAME 气象站的名称
TMAX 最高温度 TMIN 最低温度

获取某一列的值

filename = 'sitka_weather_07-2021_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)	# 该文件第一行是"STATION","NAME","DATE","TAVG","TMAX","TMIN",没有数字温度,使用next跳过改行# 从文件中获取最高温度highs = []for row in reader:high = int(row[5])	# 文件里的数据都是以字符串格式储存的highs.append(high)
print(highs)
# [53, 52, 54, 55, 55, 54, 53, 53, 53, 51, 51, 54, 52, 51, 50, 54, 56, 57, 55, 56, 54, 55, 56, 54, 52, 49, 57, 52, 52, 60, 48]

绘制温度图表

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname='msyh.ttc', size=14) # 假设选择msyh字体,大小为14# 根据最高温度绘制图形。
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(highs, c='red')# 设置图形的格式。
ax.set_title("2018年7月每日最高温度", fontsize=24,fontproperties=font)
ax.set_xlabel('', fontsize=16)
ax.set_ylabel("温度 (F)", fontsize=16,fontproperties=font)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.show()

labelsizexy轴上的数字的大小
在这里插入图片描述

模块datetime 将字符串转为日期

from datetime import datetime
first_date = datetime.strptime('2018-07-01', '%Y-%m-%d')
print(first_date)	# 2018-07-01 00:00:00
# first_date	# datetime.datetime(2018, 7, 1, 0, 0)
实参含义
%A星期几,如Monday
%B月份名,如January
%m用数表示的月份(01~12)
%d用数表示的月份中的一天(01~31)
%Y四位的年份,如2019
%y两位的年份,如19
%H24小时制的小时数(00~23)
%I12小时制的小时数(01~12)
%pam或pm
%M分钟数(00~59)
%S秒数(00~61)

在图表中添加日期

import csv
from datetime import datetime
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname='msyh.ttc', size=14)filename = 'sitka_weather_07-2021_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)# 从文件中获取日期和最高温度dates, highs = [], []for row in reader:current_date = datetime.strptime(row[2], '%Y-%m-%d')high = int(row[5])dates.append(current_date)highs.append(high)# 根据最高温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')# 设置图形的格式
ax.set_title("2021年7月每日最高温度", fontsize=24,fontproperties=font)
ax.set_xlabel('', fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度 (F)", fontsize=16,fontproperties=font)
ax.tick_params(axis='both', which='major', labelsize=16)
# which可以接收三个值: 'major', 'minor', 'both'plt.show()

fig.autofmt_xdate():绘制倾斜的日期标签

ax.tick_params()是用来设置坐标轴刻度线和刻度标签的属性的函数
axis='both’表示要设置x轴和y轴的刻度线和刻度标签的属性
which='major’表示要设置的是主刻度线和刻度标签的属性,即显示刻度值的那些刻度线和刻度标签

在这里插入图片描述

涵盖更长的时间

filename = 'sitka_weather_2021_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)# 从文件中获取日期和最高温度和最低温度dates, highs, lows = [], [], []for row in reader:current_date = datetime.strptime(row[2], '%Y-%m-%d')high = int(row[4])low = int(row[5])dates.append(current_date)highs.append(high)lows.append(low)# 根据最高温度和最低温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')
ax.plot(dates, lows, c='blue')# 设置图形的格式
ax.set_title("2021年每日最高温度", fontsize=24,fontproperties=font)
ax.set_xlabel('', fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度 (F)", fontsize=16,fontproperties=font)
ax.tick_params(axis='both', which='major', labelsize=16)plt.show()

在这里插入图片描述

给图表区域着色

方法fill_between()

# 根据最高温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red', alpha=1)
ax.plot(dates, lows, c='blue', alpha=0.5)
ax.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)

在这里插入图片描述

错误检查

数据缺失
try-except-else 代码块
continue跳过数据
remove() 或del 删除数据

在这里插入图片描述

filename = 'death_valley_2021_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)# 从文件中获取日期和最高温度dates, highs, lows = [], [], []for row in reader:current_date = datetime.strptime(row[2], '%Y-%m-%d')try:high = int(row[4])low = int(row[5])except ValueError:print(f"Missing data for {current_date}")else:dates.append(current_date)highs.append(high)lows.append(low)# 根据最高温度和最低温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots(figsize=(15, 9))
ax.plot(dates, highs, c='red', alpha=1)
ax.plot(dates, lows, c='blue', alpha=0.5)
ax.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)# 设置图形的格式
title = "2018年每日最高温度和最低温度\n美国加利福尼亚州死亡谷"
ax.set_title(title, fontsize=20,fontproperties=font)
ax.set_xlabel('', fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度 (F)", fontsize=16,fontproperties=font)
ax.tick_params(axis='both', which='major', labelsize=16)plt.show()

在这里插入图片描述

调整图表大小

figsize 单位为英寸

fig, ax = plt.subplots(figsize=(8, 5))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112617.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零知识证明(zk-SNARK)(一)

全称为 Zero-Knowledge Succinct Non-Interactive Argument of Knowledge,简洁非交互式零知识证明,简洁性使得运行该协议时,即便statement非常大,它的proof大小也仅有几百个bytes,并且验证一个proof的时间可以达到毫秒…

C++进阶之继承

继承 继承的概念及定义基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元继承与静态成员复杂的菱形继承及菱形虚拟继承继承的总结和反思 继承的概念及定义 在C中,继承是一种面向对象编程的重要概念,它允许一个类(称为子…

java-初识Servlet,Tomcat,JDBC

文章目录 前言一、ServletServlet 生命周期Servlet 实例Servlet 过滤器 二、TomcatJDBCJDBC连接数据库实例 总结 前言 java入门须知的重要概念/名词/技术 等 一、Servlet Servlet是Java Web开发中的一个核心组件,它是基于Java语言编写的服务器端程序,…

火热的大模型AIGC对数据中心存储趋势有什么影响?

随着人工智能和大数据技术的不断发展,业内AIGC(人工智能、图形处理和云计算)和大模型的发展趋势正在对数据中心存储发展方向产生深远的影响,主要集中对数据量和高性能计算的诉求。 大模型的普及要求数据中心存储具备更大的容量。大…

基于Googlenet深度学习网络的螺丝瑕疵检测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ....................................................................................% 获…

踏进字节的那一瞬间,我泪目了,这457天的外包经历值了....

一年半吗?我只记得437个日日夜夜 没有绝对的天才,只有持续不断的付出。对于我们每一个平凡人来说,改变命运只能依靠努力幸运,但如果你不够幸运,那就只能拉高努力的占比。 2021年8月,我有幸成为了字节跳动…

C语言面向对象的编程思想

面向对象编程 面向对象编程Object-Oriented Programming,OOP) 作为一种新方法,其本质是以建立模型体现出来的抽象思维过程和面向对象的方法。模型是用来反映现实世界中事物特征的。任何一个模型都不可能反映客观事物的一切具体特征&#xff0…

MVC OR DDD

MVC OR DDD 说明:这篇是标题党,不包含相关概念说明 前段时间跟随师兄学习了解了DDD领域驱动模型,觉得这个思想更好,进行下面解析和学习方面的思考和实践,觉得很好,耐心读下去。希望对您有所帮助。 首先&am…

基于ADAU1452 DSP ANC和AEC算法的实现

是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?加我微信hezkz17, 本群提供音频技术答疑服务,+群附加赠送,DSP音频项目核心开发资料, 1 使用Sigma中的NLMS算法模块 对应C源代码:

JavaSE 集合框架及背后的数据结构

目录 1 介绍2 学习的意义2.1 Java 集合框架的优点及作用2.2 笔试及面试题 3 接口 interfaces3.1 基本关系说明3.2 Collection 常用方法说明3.3 Collection 示例3.4 Map 常用方法说明3.5 Map 示例 4 实现 classes5 Java数据结构知识体系5.1 目标5.2 知识点 1 介绍 集合&#xf…

如何自己实现一个丝滑的流程图绘制工具(七)bpmn-js 批量删除、复制节点

背景 希望实现批量删除和复制节点,因为bpmn-js是canvas画的,所以不能像平时页面上的复制一样直接选择范围,会变成移动画布。 思路是: 绘制一个选择的效果框,这样才可以看出来选的节点有哪些。 上面的选中范围框效果…

K8S最新版本集群部署(v1.28) + 容器引擎Docker部署(下)

温故知新 📚第三章 Kubernetes各组件部署📗安装kubectl(可直接跳转到安装kubeadm章节,直接全部安装了)📕下载kubectl安装包📕执行kubectl安装📕验证kubectl 📗安装kubead…

Go死码消除

概念: 死码消除(dead code elimination, DCE) 是一种编译器优化技术, 作用是在编译阶段去掉对程序运行结果没有任何影响的代码 和 逃逸分析[1],内联优化[2]并称为 Go编译器执行的三个重要优化 效果: 对于 const.go代码如下: package mainimport "fmt"func max(a, b i…

wireshark过滤器的使用

目录 wiresharkwireshark的基本使用wireshark过滤器的区别 抓包案例 wireshark wireshark的基本使用 抓包采用 wireshark,提取特征时,要对 session 进行过滤,找到关键的stream,这里总结了 wireshark 过滤的基本语法,…

芯科科技宣布推出下一代暨第三代无线开发平台,打造更智能、更高效的物联网

第三代平台中的人工智能/机器学习引擎可将性能提升100倍以上 Simplicity Studio 6软件开发工具包通过新的开发环境将开发人员带向第三代平台 中国,北京 - 2023年8月22日 – 致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs&…

java定位问题工具

一、使用 JDK 自带工具查看 JVM 情况 在我的机器上运行 ls 命令,可以看到 JDK 8 提供了非常多的工具或程序: 接下来,我会与你介绍些常用的监控工具。你也可以先通过下面这张图了解下各种工具的基本作用: 为了测试这些工具&#x…

从LeakCanary看内存快照解析

在从LeakCanary看内存快照生成一节中,我们已经了解了hprof的生成,并且将生成的hprof文件通过Android Studio进行解析,确实发现了内存泄漏对象MainActivity,但是在实际开发中,要求开发者自己去手动pull hprof文件进行解…

5.基于多能互补的热电联供型微网优化运行

MATLAB代码链接:基于多能互补的热电联供型微网优化运行 MATLAB代码:基于多能互补的热电联供型微网优化运行 关键词:多能互补 综合需求响应 热电联产 微网 优化调度 参考文档:《基于多能互补的热电联供型微网优化运行》基本完全…

链表(详解)

一、链表 1.1、什么是链表 1、链表是物理存储单元上非连续的、非顺序的存储结构,数据元素的逻辑顺序是通过链表的指针地址实现,有一系列结点(地址)组成,结点可动态的生成。 2、结点包括两个部分:&#x…

OLED透明屏显示技术:未来显示科技的领航者

OLED透明屏显示技术是一种创新性的显示技术,它的特殊性质使其成为未来显示科技的领航者。 OLED透明屏具有高对比度、快速响应时间、广视角和低功耗等优势,同时,其透明度、柔性和薄型设计使其成为创新设计的理想选择。 本文将深入探讨OLED透…