代码地址:GitHub - apple/ml-mobileone: This repository contains the official implementation of the research paper, "An Improved One millisecond Mobile Backbone".
论文地址:https://arxiv.org/abs/2206.04040
MobileOne出自Apple,它的作者声称在iPhone 12上MobileOne的推理时间只有1毫秒,这也是MobileOne这个名字中One的含义。从MobileOne的快速落地可以看到重参数化在移动端的潜力:简单、高效、即插即用。
图3中的左侧部分构成了MobileOne的一个完整building block。它由上下两部分构成,其中上面部分基于深度卷积(Depthwise Convolution),下面部分基于点卷积(Pointwise Convolution)。深度卷积与点卷积的术语来自于MobileNet。深度卷积本质上是一个分组卷积,它的分组数g与输入通道相同。而点卷积是一个1×1卷积。
图3中的深度卷积模块由三条分支构成。最左侧分支是1×1卷积;中间分支是过参数化的3×3卷积,即k个3×3卷积;右侧部分是一个包含BN层的shortcut连接。这里的1×1卷积和3×3卷积都是深度卷积(也即分组卷积,分组数g等于输入通道数)。
图3中的点卷积模块由两条分支构成。左侧分支是过参数化的1×1卷积,由k个1×1卷积构成。右侧分支是一个包含BN层的跳跃连接。在训练阶段,MobileOne就是由这样的building block堆叠而成。当训练完成后,可以使用重参数化方法将图3中左侧所示的building block重参数化图3中右侧的结构。
1、yolov5
创建yolov5s-mobileone.yaml
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[ -1, 1, MobileOne, [ 128, True, 2] ], # 1-P2/4[ -1, 1, MobileOne, [ 256, True, 8] ], # 2-P3/8[ -1, 1, MobileOne, [ 512, True, 10] ], # 3-P4/16[ -1, 1, MobileOne, [ 1024, True, 1] ], # 4-P5/32[-1, 1, SPPF, [1024, 5]], # 5]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]], # 6[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7[[-1, 3], 1, Concat, [1]], # cat backbone P4[ -1, 1, MobileOne, [ 512, False, 3] ], # 9[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 2], 1, Concat, [1]], # cat backbone P3[ -1, 1, MobileOne, [ 256, False, 3] ], # 13 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P4[ -1, 1, MobileOne, [ 512, False, 3] ], # 16 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 6], 1, Concat, [1]], # cat head P5[ -1, 1, MobileOne, [ 1024, False, 3] ], # 19 (P5/32-large)[[13, 16, 19], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
common.py中增加
from typing import Optional, List, Tuple
import torch.nn.functional as Fclass SEBlock(nn.Module):""" Squeeze and Excite module.Pytorch implementation of `Squeeze-and-Excitation Networks` -https://arxiv.org/pdf/1709.01507.pdf"""def __init__(self,in_channels: int,rd_ratio: float = 0.0625) -> None:""" Construct a Squeeze and Excite Module.:param in_channels: Number of input channels.:param rd_ratio: Input channel reduction ratio."""super(SEBlock, self).__init__()self.reduce = nn.Conv2d(in_channels=in_channels,out_channels=int(in_channels * rd_ratio),kernel_size=1,stride=1,bias=True)self.expand = nn.Conv2d(in_channels=int(in_channels * rd_ratio),out_channels=in_channels,kernel_size=1,stride=1,bias=True)def forward(self, inputs: torch.Tensor) -> torch.Tensor:""" Apply forward pass. """b, c, h, w = inputs.size()x = F.avg_pool2d(inputs, kernel_size=[h, w])x = self.reduce(x)x = F.relu(x)x = self.expand(x)x = torch.sigmoid(x)x = x.view(-1, c, 1, 1)return inputs * xclass MobileOneBlock(nn.Module):""" MobileOne building block.This block has a multi-branched architecture at train-timeand plain-CNN style architecture at inference timeFor more details, please refer to our paper:`An Improved One millisecond Mobile Backbone` -https://arxiv.org/pdf/2206.04040.pdf"""def __init__(self,in_channels: int,out_channels: int,kernel_size: int,stride: int = 1,padding: int = 0,dilation: int = 1,groups: int = 1,inference_mode: bool = False,use_se: bool = False,num_conv_branches: int = 1) -> None:""" Construct a MobileOneBlock module.:param in_channels: Number of channels in the input.:param out_channels: Number of channels produced by the block.:param kernel_size: Size of the convolution kernel.:param stride: Stride size.:param padding: Zero-padding size.:param dilation: Kernel dilation factor.:param groups: Group number.:param inference_mode: If True, instantiates model in inference mode.:param use_se: Whether to use SE-ReLU activations.:param num_conv_branches: Number of linear conv branches."""super(MobileOneBlock, self).__init__()self.inference_mode = inference_modeself.groups = groupsself.stride = strideself.kernel_size = kernel_sizeself.in_channels = in_channelsself.out_channels = out_channelsself.num_conv_branches = num_conv_branches# Check if SE-ReLU is requestedif use_se:self.se = SEBlock(out_channels)else:self.se = nn.Identity()self.activation = nn.ReLU()if inference_mode:self.reparam_conv = nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size,stride=stride,padding=padding,dilation=dilation,groups=groups,bias=True)else:# Re-parameterizable skip connectionself.rbr_skip = nn.BatchNorm2d(num_features=in_channels) \if out_channels == in_channels and stride == 1 else None# Re-parameterizable conv branchesrbr_conv = list()for _ in range(self.num_conv_branches):rbr_conv.append(self._conv_bn(kernel_size=kernel_size,padding=padding))self.rbr_conv = nn.ModuleList(rbr_conv)# Re-parameterizable scale branchself.rbr_scale = Noneif kernel_size > 1:self.rbr_scale = self._conv_bn(kernel_size=1,padding=0)def forward(self, x: torch.Tensor) -> torch.Tensor:""" Apply forward pass. """# Inference mode forward pass.if self.inference_mode:return self.activation(self.se(self.reparam_conv(x)))# Multi-branched train-time forward pass.# Skip branch outputidentity_out = 0if self.rbr_skip is not None:identity_out = self.rbr_skip(x)# Scale branch outputscale_out = 0if self.rbr_scale is not None:scale_out = self.rbr_scale(x)# Other branchesout = scale_out + identity_outfor ix in range(self.num_conv_branches):out += self.rbr_conv[ix](x)return self.activation(self.se(out))def reparameterize(self):""" Following works like `RepVGG: Making VGG-style ConvNets Great Again` -https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branchedarchitecture used at training time to obtain a plain CNN-like structurefor inference."""if self.inference_mode:returnkernel, bias = self._get_kernel_bias()self.reparam_conv = nn.Conv2d(in_channels=self.rbr_conv[0].conv.in_channels,out_channels=self.rbr_conv[0].conv.out_channels,kernel_size=self.rbr_conv[0].conv.kernel_size,stride=self.rbr_conv[0].conv.stride,padding=self.rbr_conv[0].conv.padding,dilation=self.rbr_conv[0].conv.dilation,groups=self.rbr_conv[0].conv.groups,bias=True)self.reparam_conv.weight.data = kernelself.reparam_conv.bias.data = bias# Delete un-used branchesfor para in self.parameters():para.detach_()self.__delattr__('rbr_conv')self.__delattr__('rbr_scale')if hasattr(self, 'rbr_skip'):self.__delattr__('rbr_skip')self.inference_mode = Truedef _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:""" Method to obtain re-parameterized kernel and bias.Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83:return: Tuple of (kernel, bias) after fusing branches."""# get weights and bias of scale branchkernel_scale = 0bias_scale = 0if self.rbr_scale is not None:kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)# Pad scale branch kernel to match conv branch kernel size.pad = self.kernel_size // 2kernel_scale = torch.nn.functional.pad(kernel_scale,[pad, pad, pad, pad])# get weights and bias of skip branchkernel_identity = 0bias_identity = 0if self.rbr_skip is not None:kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)# get weights and bias of conv brancheskernel_conv = 0bias_conv = 0for ix in range(self.num_conv_branches):_kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])kernel_conv += _kernelbias_conv += _biaskernel_final = kernel_conv + kernel_scale + kernel_identitybias_final = bias_conv + bias_scale + bias_identityreturn kernel_final, bias_finaldef _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]:""" Method to fuse batchnorm layer with preceeding conv layer.Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95:param branch::return: Tuple of (kernel, bias) after fusing batchnorm."""if isinstance(branch, nn.Sequential):kernel = branch.conv.weightrunning_mean = branch.bn.running_meanrunning_var = branch.bn.running_vargamma = branch.bn.weightbeta = branch.bn.biaseps = branch.bn.epselse:assert isinstance(branch, nn.BatchNorm2d)if not hasattr(self, 'id_tensor'):input_dim = self.in_channels // self.groupskernel_value = torch.zeros((self.in_channels,input_dim,self.kernel_size,self.kernel_size),dtype=branch.weight.dtype,device=branch.weight.device)for i in range(self.in_channels):kernel_value[i, i % input_dim,self.kernel_size // 2,self.kernel_size // 2] = 1self.id_tensor = kernel_valuekernel = self.id_tensorrunning_mean = branch.running_meanrunning_var = branch.running_vargamma = branch.weightbeta = branch.biaseps = branch.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta - running_mean * gamma / stddef _conv_bn(self,kernel_size: int,padding: int) -> nn.Sequential:""" Helper method to construct conv-batchnorm layers.:param kernel_size: Size of the convolution kernel.:param padding: Zero-padding size.:return: Conv-BN module."""mod_list = nn.Sequential()mod_list.add_module('conv', nn.Conv2d(in_channels=self.in_channels,out_channels=self.out_channels,kernel_size=kernel_size,stride=self.stride,padding=padding,groups=self.groups,bias=False))mod_list.add_module('bn', nn.BatchNorm2d(num_features=self.out_channels))return mod_list
在yolo.py中增加
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, C2f_Add,MobileOne):c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x, C2f_Add]:args.insert(2, n) # number of repeatsn = 1
同时在yolo.py的basemodel中添加
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn) # update convdelattr(m, 'bn') # remove batchnormm.forward = m.forward_fuse # update forwardif hasattr(m, 'reparameterize'):m.reparameterize()self.info()return self
运行yolo.py