W5100S-EVB-PICO通过SNTP获取网络时间(十一)

前言

        上一章我们用开发板进行ping测试,本章我们用它通过SNTP获取网络时间并在串口显示。

什么是SNTP? 能用来做什么?

        SNTP(Simple Network Time Protocal简单网络时间协议),用于跨广域网或局域网同步时间的协议,具有较高的精确度(几十毫秒),SNTP是NTP协议的简化版;我们可用来给本地设备进行校正时间。

SNTP报文

NTP报文格式如上图所示,它的字段含义参考如下:

  • LI 闰秒标识器,占用2个bit
  • VN 版本号,占用3个bits,表示NTP的版本号,现在为3
  • Mode 模式,占用3个bits,表示模式
  • stratum(层),占用8个bits
  • Poll 测试间隔,占用8个bits,表示连续信息之间的最大间隔
  • Precision 精度,占用8个bits,,表示本地时钟精度
  • Root Delay根时延,占用8个bits,表示在主参考源之间往返的总共时延
  • Root Dispersion根离散,占用8个bits,表示在主参考源有关的名义错误
  • Reference Identifier参考时钟标识符,占用8个bits,用来标识特殊的参考源   
  • 参考时间戳,64bits时间戳,本地时钟被修改的最新时间。
  • 原始时间戳,客户端发送的时间,64bits。
  • 接受时间戳,服务端接受到的时间,64bits。
  • 传送时间戳,服务端送出应答的时间,64bits。
  • 认证符(可选项)

连接方式

        连接可上网的路由器LAN口

获取网络时间测试

1.相关代码

        我们打开库文件找到SNTP文件夹了,打开sntp.c文件,本章我们直接调用的是这几个函数:SNTP_init()、SNTP_run(),一个是初始化,一个是运行;其中初始化函数我们依次传入socket端口号、NTP服务器IP地址、时区(直接在sntp.c文件里可知中国对应为39)、数据收发缓存buf;运行函数我们传入对应的时间结构体即可,如下所示:

void SNTP_init(uint8_t s, uint8_t *ntp_server, uint8_t tz, uint8_t *buf)
{NTP_SOCKET = s;NTPformat.dstaddr[0] = ntp_server[0];NTPformat.dstaddr[1] = ntp_server[1];NTPformat.dstaddr[2] = ntp_server[2];NTPformat.dstaddr[3] = ntp_server[3];time_zone = tz;data_buf = buf;uint8_t Flag;NTPformat.leap = 0;           /* leap indicator */NTPformat.version = 4;        /* version number */NTPformat.mode = 3;           /* mode */NTPformat.stratum = 0;        /* stratum */NTPformat.poll = 0;           /* poll interval */NTPformat.precision = 0;      /* precision */NTPformat.rootdelay = 0;      /* root delay */NTPformat.rootdisp = 0;       /* root dispersion */NTPformat.refid = 0;          /* reference ID */NTPformat.reftime = 0;        /* reference time */NTPformat.org = 0;            /* origin timestamp */NTPformat.rec = 0;            /* receive timestamp */NTPformat.xmt = 1;            /* transmit timestamp */Flag = (NTPformat.leap<<6)+(NTPformat.version<<3)+NTPformat.mode; //one byte Flagmemcpy(ntpmessage,(void const*)(&Flag),1);
}int8_t SNTP_run(datetime *time)
{uint16_t RSR_len;uint32_t destip = 0;uint16_t destport;uint16_t startindex = 40; //last 8-byte of data_buf[size is 48 byte] is xmt, so the startindex should be 40switch(getSn_SR(NTP_SOCKET)){case SOCK_UDP:if ((RSR_len = getSn_RX_RSR(NTP_SOCKET)) > 0){if (RSR_len > MAX_SNTP_BUF_SIZE) RSR_len = MAX_SNTP_BUF_SIZE;	// if Rx data size is lager than TX_RX_MAX_BUF_SIZErecvfrom(NTP_SOCKET, data_buf, RSR_len, (uint8_t *)&destip, &destport);get_seconds_from_ntp_server(data_buf,startindex);time->yy = Nowdatetime.yy;time->mo = Nowdatetime.mo;time->dd = Nowdatetime.dd;time->hh = Nowdatetime.hh;time->mm = Nowdatetime.mm;time->ss = Nowdatetime.ss;ntp_retry_cnt=0;//close(NTP_SOCKET);//return 1;}if(ntp_retry_cnt<0xFFFF){if(ntp_retry_cnt==0)//first send request, no need to wait{sendto(NTP_SOCKET,ntpmessage,sizeof(ntpmessage),NTPformat.dstaddr,ntp_port);ntp_retry_cnt++;}else // send request again? it should wait for a while{if((ntp_retry_cnt % 0xFFF) == 0) //wait time{sendto(NTP_SOCKET,ntpmessage,sizeof(ntpmessage),NTPformat.dstaddr,ntp_port);
#ifdef _SNTP_DEBUG_printf("ntp retry: %d\r\n", ntp_retry_cnt);
#endifntp_retry_cnt++;return 1;}}}else //ntp retry fail{ntp_retry_cnt=0;
#ifdef _SNTP_DEBUG_printf("ntp retry failed!\r\n");
#endifclose(NTP_SOCKET);}break;case SOCK_CLOSED:socket(NTP_SOCKET,Sn_MR_UDP,ntp_port,0);break;}// Return value// 0 - failed / 1 - successreturn 0;
}

        主函数比较简单,我们直接初始化网络配置信息对应参数,以及NTP服务器IP地址;然后初始化sntp后在循环里调用即可,如下所示:

#define SOCKET_ID 0
#define ETHERNET_BUF_MAX_SIZE (1024 * 2)void network_init(void);wiz_NetInfo net_info = {.mac = {0x00, 0x08, 0xdc, 0x16, 0xed, 0x2e},.ip = {192, 168, 1, 11},.sn = {255, 255, 255, 0},.gw = {192, 168, 1, 1},.dns = {8, 8, 8, 8},.dhcp = NETINFO_STATIC};
wiz_NetInfo get_info;
static uint8_t ethernet_buf[ETHERNET_BUF_MAX_SIZE] = {0,};
static uint8_t sntp_server_ip[4]={202, 112, 10, 60};
static uint16_t timezone = 39;
datetime date;int main()                                                          
{   stdio_init_all();sleep_ms(2000);network_init();SNTP_init(SOCKET_ID, sntp_server_ip, timezone, ethernet_buf);while(true){SNTP_run(&date);sleep_ms(1000);printf("NOW: %d-%d-%d  %d:%d:%d\r\n",date.yy,date.mo,date.dd,date.hh,date.mm,date.ss);}
}void network_init(void)
{uint8_t temp;wizchip_initialize();printf("W5100s udp client example.\r\n");sleep_ms(2000);wizchip_setnetinfo(&net_info);print_network_information(get_info);sleep_ms(2000);   
}

2. 测试现象

编译烧录后,打开串行监视器,即可看到在打印的实时时间信息,前两次打印为0是由于socket端口未开启和开启后首次发送请求前这两次状态期间,尚未获得时间数据,因此打印的是初始化赋的0,如下图所示:

相关链接

本章相关例程链接icon-default.png?t=N7T8https://gitee.com/wiznet-hk/w5100s-evb-pico-routine.git

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113622.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫:一个爬取豆瓣电影人像的小案例

从谷歌浏览器的开发工具进入 选择图片右键点击检查 ![在这里插入图片描述](https://img-blog.csdnimg.cn/1b38c2a942c441fb8cb545a28bb35015.png 翻页之后发现网址变化的只有start数值&#xff0c;每次变化值为30 Python代码 import requests from bs4 import BeautifulSou…

C++11

✅<1>主页&#xff1a;&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;C11 ☂️<3>开发环境&#xff1a;Visual Studio 2022 &#x1f4ac;<4>前言&#xff1a;C标准10年磨一剑,成就了一次非常成功的更新C11&#xff0c;增加了非常有…

DolphinDB 携手白鲸开源 WhaleStudio 打造高效敏捷的 DataOps 解决方案

浙江智臾科技有限公司&#xff08;简称&#xff1a;DolphinDB&#xff09;和北京白鲸开源科技有限公司&#xff08;简称&#xff1a;白鲸开源&#xff09;是在大数据技术领域活跃的两支专业团队。 DolphinDB 专注于为用户提供集高性能存储、复杂分析能力和流处理于一体的实时计…

三、原型模式

一、什么是原型模式 原型&#xff08;Prototype&#xff09;模式的定义如下&#xff1a;用一个已经创建的实例作为原型&#xff0c;通过复制该原型对象来创建一个和原型相同或相似的新对象。在这里&#xff0c;原型实例指定了要创建的对象的种类。用这种方式创建对象非常高效&a…

2023固态U盘、移动硬盘对比

最近测试了几款固态U盘/移动硬盘&#xff0c;希望能大家的选购有点帮助。 1、移速逸动-2T&#xff08;500MB/s&#xff09;&#xff1a;799元某音 2、爱国者u397-1T&#xff08;1000MB/s&#xff09;&#xff1a;578元京东 3、梵想FF520-512G&#xff08;500MB/s&#xff09…

【数据结构】多叉树转换为二叉树-c++代码实现-POJ 3437 Tree Grafting

文章目录 写这个题目的原因寻找提交网址题目解决思路AC代码成功AC 写这个题目的原因 1、今天在看王道考研数据结构的课&#xff08;虽然我要保研&#xff0c;但是因为这些看保研面试的时候会问&#xff0c;所以看一下嘞orz&#xff09;&#xff0c;看到了这个多叉树转换为二叉…

QT基础教程之六布局管理器和常用控件

QT基础教程之六布局管理器和常用控件 布局管理器 所谓 GUI 界面&#xff0c;归根结底&#xff0c;就是一堆组件的叠加。我们创建一个窗口&#xff0c;把按钮放上面&#xff0c;把图标放上面&#xff0c;这样就成了一个界面。在放置时&#xff0c;组件的位置尤其重要。我们必须…

1、Spring是什么?

Spring 是一款主流的 Java EE 轻量级开源框架 。 框架 你可以理解为是一个程序的半成品&#xff0c;它帮我们实现了一部分功能&#xff0c;用这个框架我们可以减少代码的实现和功能的开发。 开源 也就是说&#xff0c;它开放源代码。通过源代码&#xff0c;你可以看到它是如何…

不需要任何编程经验也能牢固掌握Java精髓——《Java官方入门教程(第9版·Java 17)》

《Java官方入门教程&#xff08;第9版Java 17&#xff09;》针对Java SE 17做了全面细致的更新&#xff0c;将引导你轻松学习最新的核心Java编程技能。《Java官方入门教程&#xff08;第9版Java 17&#xff09;》由畅销编程书作者Herbert Schildt撰写&#xff0c;开篇讲述基础知…

Java实现根据商品ID获取当当商品详情数据,当当商品详情数据接口,当当网API接口封装方法

要通过当当网的API获取商品详情数据&#xff0c;您可以使用当当开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例&#xff0c;展示如何通过当当开放平台API获取商品详情属性数据接口&#xff1a; 首先&#xff0c;确保您已注册成为当当网开放平台的开发者&…

C位运算做标识位使用

C位运算做标识位使用

Keil模拟器 STM32F103上手

一般嵌入式操作系统因为它的特殊性&#xff0c;往往和硬件平台密切相关连&#xff0c;具体的嵌入式操作系统往往只能在特定的硬件上运行。 可以采用软件方式来模拟一个能够运行RT-Thread操作系统的硬件模块&#xff0c;这就是ARM公司的MDK-ARM仿真模拟环境。 MDK-ARM&#xf…

Spring Boot+Atomikos进行多数据源的分布式事务管理详解和实例

文章目录 0.前言1.参考文档2.基础介绍3.步骤1. 添加依赖到你的pom.xml文件:2. 配置数据源及其对应的JPA实体管理器和事务管理器:3. Spring BootMyBatis集成Atomikos4. 在application.properties文件中配置数据源和JPA属性&#xff1a; 4.使用示例5.底层原理 0.前言 背景&#x…

gif怎么转换成mp4格式视频

gif怎么转换成mp4格式视频&#xff1f;GIF格式是一种广泛应用的公用图像文件格式标准&#xff0c;具有许多优势。它占用的内存较小&#xff0c;可以实现自动循环播放&#xff0c;并且兼容多个平台。然而&#xff0c;GIF格式也存在一些缺点。例如&#xff0c;它无法处理复杂的图…

C语言深入理解指针(非常详细)(一)

目录 内存和地址内存编址的理解 指针变量和地址取地址操作符&#xff08;&&#xff09;指针变量和解引用操作符&#xff08;*&#xff09;指针变量如何拆解指针类型解引用操作符 指针变量的大小 指针变量类型的意义指针的解引用指针-整数 const修饰指针const修饰变量const修…

day01-ES6新特性以及ReactJS入门

课程介绍 ES6新特性ReactJS入门学习 1、ES6 新特性 1.2、let 和 const 命令 var 之前&#xff0c;我们写js定义变量的时候&#xff0c;只有一个关键字&#xff1a; var var 有一个问题&#xff0c;变量作用域的问题&#xff0c;作用域不可控&#xff0c;就是定义的变量有时会…

Linux操作系统--shell编程(正则表达式)

1..正则表达式概述 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中,grep,sed,awk 等文本处理工具都支持通过正则表达式进行模式匹配。 2.常规的匹配操作 3.…

【踩坑日记】STM32 USART 串口与 FreeRTOS 冲突

文章目录 问题描述问题出现的环境问题解决过程第一步第二步第三步第四步第五步第六步第七步第八步 后续验证一些思考类似的问题后记 问题描述 笔者使用 FreeRTOS 创建了两个任务&#xff0c;使两颗 LED 以不同频率闪烁&#xff0c;但是在加入串口 USART 部分代码后&#xff0c…

java八股文面试[多线程]——指令重排序

关于a的操作&#xff0c;由原来的6个指令&#xff0c;变成了4个指令。 1. 指令重排序的介绍 1&#xff09;指令重排序的类型 在执行程序时为了提高性能&#xff0c;编译器和处理器常常会对指令做重排序。 重排序分三种类型&#xff1a;编译器优化的重排序 编译器在不改变单线…

YOLO V5 和 YOLO V8 对比学习

参考文章&#xff1a; 1、YOLOv5 深度剖析 2、如何看待YOLOv8&#xff0c;YOLOv5作者开源新作&#xff0c;它来了&#xff01;? 3、anchor的简单理解 完整网络结构 YOLO v5和YOLO v8的Head部分 YOLO v8的Head 部分相比 YOLOv5 改动较大&#xff0c;换成了目前主流的解耦头结构…