如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?

我使用DeepSeek AIDexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中,我将逐步指导您如何构建像我一样的机器人。

DeepSeek 最近发布了R1,这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本,但增加了一些功能。这使它成为构建 AI 驱动应用程序(包括交易机器人)的绝佳工具。Dexscreener 是一种用于跟踪去中心化交易所 (DEX) 的强大工具。它提供有关代币价格、流动性和交易量的实时数据,对加密货币交易者来说必不可少。

步骤 1:入门 首先,在此注册 DeepSeek AI 。

它可以免费使用,并允许您运行自定义提示来构建和部署机器人。 写下你的第一个提示 首先让 DeepSeek AI 充当一位经验丰富的程序员:

“你好。请假装你是一个专业程序员一个哈佛学位和10年的经验。
创造一个机器人与 Dexscreener 交互。
我们需要解析、保存和分析每一枚坚固/抽取/成为层的硬币1、上线CEX等找到模式”。

这将为您的机器人生成初始代码。该机器人将与 Dexscreener API 交互以获取实时数据并进行分析。

第 2 步:添加过滤器和黑名单

加密货币交易存在风险。为了使机器人更安全,我们需要添加过滤器和黑名单。这些功能将:

  1. 过滤掉有风险的代币。
  2. 将与诈骗相关的开发商列入黑名单。

为了使机器人更加强大,我们需要添加过滤器和黑名单以避免有风险的令牌。使用以下提示:

“修改代码 使用过滤器、硬币黑名单和开发者黑名单开发人员列入黑名单。
并将所有这些设置放入配置文件中。”

步骤 3:避免虚假音量

具有虚假交易量的代币可能会欺骗您的机器人。要检测虚假交易量,请集成Pocket Universe API

更新你的机器人

使用以下提示:

“避免使用虚假数量的硬币,通过你的算法检查它是否是假的,或者使用与 Dexscreener 兼容的 Pocket Universe API。”

这会为您的机器人添加一个验证步骤,确保它不会交易不可靠的代币。

步骤 4:防止地毯被拉扯

为了避免诈骗,请与RugCheck.xyz集成。此外,我们可以检测代币供应是否捆绑,这通常是一个危险信号。使用以下提示:

“检查 http://rugcheck.xyz 上的每个代币,并仅与标记为“良好”的合约进行交互。
另外,检查代币的供应是否未捆绑。
如果捆绑 - 黑名单+dev 黑名单。”

第 5 步:自动交易

对于自动交易,请集成BonkBot或Trojan等机器人。这些机器人可以根据您的机器人信号执行交易。 合并代码并添加通知 为了执行交易,我们可以集成现有的交易机器人,如BonkBot或Trojan。我们还将添加 Telegram 通知支持。使用以下提示:

交易选定的代币,请通过 Telegram 使用 BonkBot,同时添加 TG 支持获取买入/卖出通知,并将所有 代码合并为一体。
另外,请写出如何启动代码。”

第 6 步:启动你的机器人

启动机器人的方法如下: 克隆机器人的存储库(如果您还没有,请向 DeepSeek 索取代码)。 安装依赖项: 

pip 安装 -r 要求.txt txt

config.json使用您的过滤器和 API 密钥配置文件。

运行机器人:

python 交易机器人.py py

步骤 7:可选 — 添加 UI

 最后,您可以要求 DeepSeek 为您的机器人创建 UI。尽管由于流量太大,我无法显示它,但 DeepSeek 成功地为我的机器人创建了一个 UI,使其准备好进行交易和分析来自 Dexscreener 的数据。 询问DeepSeek:

为我的机器人创建一个简单的 Web UI,其中包含过滤器、日志和交易仪表

完整代码也可以在这里找到

import requests
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import psycopg2
from sqlalchemy import create_engine
from typing import Dict, List, Optional# Enhanced Configuration
CONFIG = {"DB": {"dbname": "dexscreener","user": "admin","password": "your_password","host": "localhost","port": "5432"},"FILTERS": {"min_liquidity": 5000,  # USD"min_age_days": 3,"coin_blacklist": ["0x123...def",  # Known scam token address"SUSPECTCOIN"   # Blacklisted symbol],"dev_blacklist": ["0x456...abc",  # Known rug developer address"0x789...fed"   # Another scam developer],"chain_whitelist": ["ethereum", "binance-smart-chain"]}
}class EnhancedDexScreenerBot:def __init__(self):self.engine = create_engine(f'postgresql+psycopg2://{CONFIG["DB"]["user"]}:{CONFIG["DB"]["password"]}'f'@{CONFIG["DB"]["host"]}/{CONFIG["DB"]["dbname"]}')self._init_db()self.model = IsolationForest(n_estimators=100, contamination=0.01)self.historical_data = self._load_historical_data()def _init_db(self):"""Initialize database with additional security tables"""with self.engine.connect() as conn:conn.execute("""CREATE TABLE IF NOT EXISTS blacklist (address VARCHAR(42) PRIMARY KEY,type VARCHAR(20) CHECK (type IN ('coin', 'dev')),reason TEXT,listed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);CREATE INDEX IF NOT EXISTS idx_blacklist_type ON blacklist(type);""")# Migrate config blacklists to databaseself._seed_initial_blacklists()def _seed_initial_blacklists(self):"""Initialize blacklists from config"""with self.engine.connect() as conn:# Seed coin blacklistfor address in CONFIG["FILTERS"]["coin_blacklist"]:conn.execute("""INSERT INTO blacklist (address, type)VALUES (%s, 'coin')ON CONFLICT (address) DO NOTHING""",(address,))# Seed dev blacklistfor address in CONFIG["FILTERS"]["dev_blacklist"]:conn.execute("""INSERT INTO blacklist (address, type)VALUES (%s, 'dev')ON CONFLICT (address) DO NOTHING""",(address,))def apply_filters(self, df: pd.DataFrame) -> pd.DataFrame:"""Apply all security and quality filters"""# Chain whitelist filterdf = df[df['chain'].isin(CONFIG["FILTERS"]["chain_whitelist"])]# Liquidity filterdf = df[df['liquidity'] >= CONFIG["FILTERS"]["min_liquidity"]]# Age filtermin_age = datetime.utcnow() - timedelta(days=CONFIG["FILTERS"]["min_age_days"])df = df[pd.to_datetime(df['created_at']) < min_age]# Database blacklist checkblacklisted_coins = pd.read_sql("SELECT address FROM blacklist WHERE type = 'coin'",self.engine)['address'].tolist()blacklisted_devs = pd.read_sql("SELECT address FROM blacklist WHERE type = 'dev'",self.engine)['address'].tolist()# Address and symbol checksdf = df[~df['pair_address'].isin(blacklisted_coins) &~df['base_token_address'].isin(blacklisted_coins) &~df['creator_address'].isin(blacklisted_devs) &~df['base_token_name'].isin(CONFIG["FILTERS"]["coin_blacklist"])]return dfdef process_data(self, raw_data: List[Dict]) -> pd.DataFrame:"""Enhanced data processing with security fields"""df = pd.DataFrame(raw_data)[['pairAddress', 'baseToken', 'quoteToken', 'priceUsd','liquidity', 'volume', 'chainId', 'dexId', 'createdAt']]processed = pd.DataFrame({'pair_address': df['pairAddress'],'base_token_name': df['baseToken'].apply(lambda x: x['name']),'base_token_address': df['baseToken'].apply(lambda x: x['address']),'quote_token_address': df['quoteToken'].apply(lambda x: x['address']),'price': pd.to_numeric(df['priceUsd']),'liquidity': pd.to_numeric(df['liquidity']),'volume_24h': pd.to_numeric(df['volume']['h24']),'chain': df['chainId'],'exchange': df['dexId'],'created_at': pd.to_datetime(df['createdAt'], unit='ms'),'timestamp': datetime.utcnow()})# Apply security filtersprocessed = self.apply_filters(processed)return processeddef detect_anomalies(self, new_data: pd.DataFrame) -> pd.DataFrame:"""Anomaly detection with blacklist awareness"""if not new_data.empty:features = new_data[['price', 'liquidity', 'volume_24h']]features = np.log1p(features)self.model.fit(self.historical_data)anomalies = self.model.predict(features)new_data['anomaly_score'] = self.model.decision_function(features)return new_data[anomalies == -1]return pd.DataFrame()def analyze_market_events(self, anomalous_data: pd.DataFrame):"""Enhanced analysis with blacklist monitoring"""for _, row in anomalous_data.iterrows():# Check for blacklist pattern matchesif self._detect_blacklist_pattern(row):self._log_event(row, 'BLACKLIST_PATTERN')# Existing detection logic...def _detect_blacklist_pattern(self, row: pd.Series) -> bool:"""Detect patterns matching known blacklist characteristics"""# Check for new addresses similar to blacklisted onessimilar_coins = pd.read_sql(f"""SELECT COUNT(*) FROM blacklistWHERE type = 'coin'AND similarity(address, '{row['base_token_address']}') > 0.8""", self.engine).scalar()similar_devs = pd.read_sql(f"""SELECT COUNT(*) FROM blacklistWHERE type = 'dev'AND similarity(address, '{row['creator_address']}') > 0.8""", self.engine).scalar()return similar_coins > 0 or similar_devs > 0def add_to_blacklist(self, address: str, list_type: str, reason: str):"""Programmatically add entries to blacklist"""with self.engine.connect() as conn:conn.execute("""INSERT INTO blacklist (address, type, reason)VALUES (%s, %s, %s)ON CONFLICT (address) DO UPDATE SET reason = EXCLUDED.reason""",(address, list_type, reason))def run(self):"""Enhanced main loop with filtering"""while True:try:raw_data = self.fetch_pair_data()processed_data = self.process_data(raw_data)if not processed_data.empty:anomalies = self.detect_anomalies(processed_data)self.analyze_market_events(anomalies)processed_data.to_sql('pairs', self.engine, if_exists='append', index=False)self.historical_data = pd.concat([self.historical_data, processed_data]).tail(100000)# Update blacklists periodicallyself._refresh_blacklists()time.sleep(60)  # Add sleep between iterationsexcept Exception as e:print(f"Runtime error: {e}")def _refresh_blacklists(self):"""Refresh blacklists from external sources"""# Example: Sync with community-maintained blackliststry:response = requests.get("https://api.gopluslabs.io/api/v1/token_security/1")data = response.json()for token in data['tokens']:if token['is_honeypot']:self.add_to_blacklist(token['contract_address'], 'coin', 'Automated honeypot detection')except Exception as e:print(f"Blacklist refresh failed: {e}")# Example usage with blacklist management
if __name__ == "__main__":bot = EnhancedDexScreenerBot()# Manually add suspicious entrybot.add_to_blacklist("0xNEW...SCAM", "dev", "Suspicious deployment pattern")bot.run()

1

通过遵循这些步骤,您可以创建一个实时的加密货币交易机器人,该机器人可以:
足够聪明,可以避免诈骗。
能够有效地检测趋势和模式。

如果我能在一夜之间将100美元变成35,000美元,你也可以!试试看,祝你交易愉快!🚀

免责声明:加密货币交易涉及高风险。此机器人是协助您分析的工具,不是财务建议。请始终负责任地进行交易。 

1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11659.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ArkTS渲染控制

文章目录 if/else:条件渲染ArkUI通过自定义组件的build()函数和@Builder装饰器中的声明式UI描述语句构建相应的UI。在声明式描述语句中开发者除了使用系统组件外,还可以使用渲染控制语句来辅助UI的构建,这些渲染控制语句包括控制组件是否显示的条件渲染语句,基于数组数据快…

potplayer字幕

看视频学习&#xff0c;实时字幕可以快速过滤水字数阶段&#xff0c;提高效率&#xff0c;但是容易错过一些信息。下面就是解决这一问题。 工具ptoplayer 一.生成字幕 打开学习视频&#xff0c;右键点击视频画面&#xff0c;点选字幕。勾选显示字幕。点选创建有声字幕&#…

deepseek的两种本地使用方式

总结来说 ollama是命令行 GPT4ALL桌面程序。 然后ollamaAnythingLLM可以达到桌面或web的两种接入方式。 一. ollama和deepseek-r1-1.5b和AnythingLLM 本文介绍一个桌面版的deepseek的本地部署过程&#xff0c;其中ollama可以部署在远程。 1. https://www.cnblogs.com/janeysj/p…

海外问卷调查渠道查,如何影响企业的运营

我们注意到&#xff0c;随着信息资源和传播的变化&#xff0c;海外问卷调查渠道查已发生了深刻的变化。几年前&#xff0c;市场调研是业内专家们的事&#xff0c;即使是第二手资料也需要专业人士来完成&#xff1b;但如今的因特网和许许多多的信息数据库&#xff0c;使每个人都…

TensorFlow简单的线性回归任务

如何使用 TensorFlow 和 Keras 创建、训练并进行预测 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 8.完整代码 1. 数据准备与预处理 我们将使用一个简单的线性回归问题&#xff0c;其中输入特征 x 和标…

当卷积神经网络遇上AI编译器:TVM自动调优深度解析

从铜线到指令&#xff1a;硬件如何"消化"卷积 在深度学习的世界里&#xff0c;卷积层就像人体中的毛细血管——数量庞大且至关重要。但鲜有人知&#xff0c;一个简单的3x3卷积在CPU上的执行路径&#xff0c;堪比北京地铁线路图般复杂。 卷积的数学本质 对于输入张…

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 &#xff08;1&#xff09;存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些&#xff0c;以及这些存储引擎是否支持事务能看出在MySQL中&#xff0c;只有InnoDB是支持事务的 &#x…

影视文件大数据高速分发方案

在当今的数字时代&#xff0c;影视行业的内容创作和传播方式经历了翻天覆地的变化。随着4K、8K高清视频的普及&#xff0c;以及虚拟现实(VR)和增强现实(AR)技术的发展&#xff0c;影视文件的数据量正以前所未有的速度增长。这就要求行业内的参与者必须拥有高效的大数据传输解决…

C语言教程——文件处理(2)

目录 前言 一、顺序读写函数&#xff08;续&#xff09; 1.1fprintf 1.2fscanf 1.3fwrite 1.4fread 二、流和标准流 2.1流 2.2标准流 2.3示例 三、sscanf和sprintf 3.1sprintf 3.2sscanf 四、文件的随机读写 4.1fseek 4.2ftell 4.3rewind 五、文件读取结束的…

建表注意事项(2):表约束,主键自增,序列[oracle]

没有明确写明数据库时,默认基于oracle 约束的分类 用于确保数据的完整性和一致性。约束可以分为 表级约束 和 列级约束&#xff0c;区别在于定义的位置和作用范围 复合主键约束: 主键约束中有2个或以上的字段 复合主键的列顺序会影响索引的使用&#xff0c;需谨慎设计 添加…

线性回归的损失和优化02

线性回归的损失和优化 学习目标 知道线性回归中损失函数知道使用正规方程对损失函数优化的过程知道使用梯度下降法对损失函数优化的过程 假设刚才的房子例子&#xff0c;真实的数据之间存在这样的关系&#xff1a; 真实关系&#xff1a; 真实房子价格 0.02中心区域的距离 0.…

年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战

原创内容第785篇&#xff0c;专注量化投资、个人成长与财富自由。 大年初五&#xff0c;年很快就过完了。 其实就是本身也只是休假一周&#xff0c;但是我们赋予了它太多意义。 周五咱们发布发aitrader v4.1&#xff0c;带了backtraderctp期货的实盘接口&#xff1a; aitra…

【数据结构】_链表经典算法OJ(力扣/牛客第二弹)

目录 1. 题目1&#xff1a;返回倒数第k个节点 1.1 题目链接及描述 1.2 解题思路 1.3 程序 2. 题目2&#xff1a;链表的回文结构 2.1 题目链接及描述 2.2 解题思路 2.3 程序 1. 题目1&#xff1a;返回倒数第k个节点 1.1 题目链接及描述 题目链接&#xff1a; 面试题 …

成绩案例demo

本案例较为简单&#xff0c;用到的知识有 v-model、v-if、v-else、指令修饰符.prevent .number .trim等、computed计算属性、toFixed方法、reduce数组方法。 涉及的功能需求有&#xff1a;渲染、添加、删除、修改、统计总分&#xff0c;求平均分等。 需求效果如下&#xff1a…

git基础使用--4---git分支和使用

文章目录 git基础使用--4---git分支和使用1. 按顺序看2. 什么是分支3. 分支的基本操作4. 分支的基本操作4.1 查看分支4.2 创建分支4.3 切换分支4.4 合并冲突 git基础使用–4—git分支和使用 1. 按顺序看 -git基础使用–1–版本控制的基本概念 -git基础使用–2–gti的基本概念…

Kafka下载

一、Kafka下载 下载地址&#xff1a;https://kafka.apache.org/downloads 二、Kafka安装 因为选择下载的是 .zip 文件&#xff0c;直接跳过安装&#xff0c;一步到位。 选择在任一磁盘创建空文件夹&#xff08;不要使用中文路径&#xff09;&#xff0c;解压之后把文件夹内容…

nodejs:express + js-mdict 网页查询英汉词典,能播放声音

向 DeepSeek R1 提问&#xff1a; 我想写一个Web 前端网页&#xff0c;后台用 nodejs js-mdict, 实现在线查询英语单词 1. 项目结构 首先&#xff0c;创建一个项目目录&#xff0c;结构如下&#xff1a; mydict-app/ ├── public/ │ ├── index.html │ ├── st…

【自开发工具介绍】SQLSERVER的ImpDp和ExpDp工具01

1、开发背景 大家都很熟悉&#xff0c;Oracle提供了Impdp和ExpDp工具&#xff0c;功能很强大&#xff0c;可以进行db的导入导出的处理。但是对于Sqlserver数据库只是提供了简单的图形化的导出导入工具&#xff0c;在实际的开发和生产环境不太可能让用户在图形化的界面选择移行…

【Block总结】完全注意力Fully Attentional,同时捕捉空间和通道的注意力|即插即用

论文信息 标题: Fully Attentional Network for Semantic Segmentation论文链接: https://arxiv.org/pdf/2112.04108GitHub链接: https://github.com/maggiesong7/FullyAttentional 创新点 全注意力模块&#xff08;FLA&#xff09;: 该模块能够在一个相似性图中同时捕捉空…

强化学习、深度学习、深度强化学习的区别是什么?

前言 深度强化学习就是 深度学习 和 强化学习 的结合体。它让计算机程序&#xff08;也就是智能体&#xff09;在特定环境中不断尝试&#xff0c;从错误中学习&#xff0c;最终找到最优的行动策略。 深度学习是AlphaGo从棋谱里学习&#xff0c;强化学些Alphazero 学习规则&am…