AI大模型开发原理篇-5:循环神经网络RNN

神经概率语言模型NPLM也存在一些明显的不足之处:模型结构简单,窗口大小固定,缺乏长距离依赖捕捉,训练效率低,词汇表固定等。为了解决这些问题,研究人员提出了一些更先进的神经网络语言模型,如循环神经网络、长短期记忆网络、门控循环单元(GRU)和Transformer等。这些模型能够捕捉长距离依赖,处理变长序列,同时具有更强的表达能力和泛化能力。

RNN 的基本概念

RNN 的主要特点是信息的循环传递。与标准神经网络不同,RNN 在每一时刻的输出不仅依赖于当前的输入,还依赖于前一个时刻的隐藏状态(或称为记忆)。因此,RNN 适合处理序列数据,因为它能通过隐藏层的状态将历史信息带入到模型中。

RNN 的优缺点

优点:

  • 序列建模能力:RNN 能够处理和建模序列数据中的时间依赖关系,适用于自然语言处理、语音识别、时间序列预测等任务。
  • 参数共享:RNN 的所有时刻共享相同的参数,这使得它能够在处理不同长度的序列时保持参数的共享,减少了计算开销。

缺点:

  • 梯度消失和梯度爆炸:在训练过程中,当序列长度较长时,RNN 面临梯度消失或爆炸的问题。这会使得模型难以捕捉到远距离依赖。
  • 记忆有限:标准的 RNN 在处理长序列时会逐渐丧失对早期输入的记忆,这使得它对于长距离依赖的建模效果较差。

RNN 的应用

RNN 主要应用于以下任务:

  • 自然语言处理(NLP):文本生成、机器翻译、情感分析、命名实体识别(NER)等。
  • 时间序列预测:如股票价格预测、气象预测、交通流量预测等。
  • 语音识别:RNN 可用于语音信号的建模,进行语音到文本的转换。
  • 视频分析:RNN 还可以应用于视频数据的处理,如动作识别。

解决 RNN 问题的改进模型:LSTM 和 GRU

传统的 RNN 在处理长序列时容易遇到梯度消失或梯度爆炸的问题,因此在实际应用中,长短期记忆网络(LSTM)门控循环单元(GRU) 被提出,以解决这一问题。

LSTM(Long Short-Term Memory)

LSTM 是一种特殊的 RNN 变体,它通过引入门控机制来避免梯度消失问题。LSTM 使用了三个门:

  • 遗忘门(Forget Gate):决定丢弃多少过去的信息。
  • 输入门(Input Gate):决定当前输入有多少信息进入记忆单元。
  • 输出门(Output Gate):决定当前记忆有多少信息影响输出。

LSTM 通过这些门控机制来控制信息流动,能够长期保留重要的信息,解决了传统 RNN 在长序列建模中的问题。

GRU(Gated Recurrent Unit)

GRU 是 LSTM 的一个简化版本。它只有两个门:

  • 更新门(Update Gate):决定多少历史信息需要保留。
  • 重置门(Reset Gate):决定当前输入对隐藏状态的影响。

与 LSTM 相比,GRU 在结构上更简单,但在许多应用中能够达到与 LSTM 相似的效果。

RNN 的训练:反向传播通过时间(BPTT)

RNN 的训练方法是通过 反向传播通过时间(Backpropagation Through Time, BPTT),即通过计算梯度并进行参数更新来训练模型。BPTT 是标准反向传播算法的延伸,它将序列中的每个时间步展开,并将误差反向传播至前面的每个时刻。

训练步骤

  1. 前向传播:计算每个时间步的输出 yty_tyt​ 和隐藏状态 hth_tht​。
  2. 计算损失:通常使用交叉熵损失函数来衡量预测值与真实值之间的差距。
  3. 反向传播:将损失通过时间反向传播,计算梯度并更新模型参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11661.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用 DeepSeek 和 Dexscreener 构建免费的 AI 加密交易机器人?

我使用DeepSeek AI和Dexscreener API构建的一个简单的 AI 加密交易机器人实现了这一目标。在本文中,我将逐步指导您如何构建像我一样的机器人。 DeepSeek 最近发布了R1,这是一种先进的 AI 模型。您可以将其视为 ChatGPT 的免费开源版本,但增加…

ArkTS渲染控制

文章目录 if/else:条件渲染ArkUI通过自定义组件的build()函数和@Builder装饰器中的声明式UI描述语句构建相应的UI。在声明式描述语句中开发者除了使用系统组件外,还可以使用渲染控制语句来辅助UI的构建,这些渲染控制语句包括控制组件是否显示的条件渲染语句,基于数组数据快…

potplayer字幕

看视频学习,实时字幕可以快速过滤水字数阶段,提高效率,但是容易错过一些信息。下面就是解决这一问题。 工具ptoplayer 一.生成字幕 打开学习视频,右键点击视频画面,点选字幕。勾选显示字幕。点选创建有声字幕&#…

deepseek的两种本地使用方式

总结来说 ollama是命令行 GPT4ALL桌面程序。 然后ollamaAnythingLLM可以达到桌面或web的两种接入方式。 一. ollama和deepseek-r1-1.5b和AnythingLLM 本文介绍一个桌面版的deepseek的本地部署过程,其中ollama可以部署在远程。 1. https://www.cnblogs.com/janeysj/p…

海外问卷调查渠道查,如何影响企业的运营

我们注意到,随着信息资源和传播的变化,海外问卷调查渠道查已发生了深刻的变化。几年前,市场调研是业内专家们的事,即使是第二手资料也需要专业人士来完成;但如今的因特网和许许多多的信息数据库,使每个人都…

TensorFlow简单的线性回归任务

如何使用 TensorFlow 和 Keras 创建、训练并进行预测 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 8.完整代码 1. 数据准备与预处理 我们将使用一个简单的线性回归问题,其中输入特征 x 和标…

当卷积神经网络遇上AI编译器:TVM自动调优深度解析

从铜线到指令:硬件如何"消化"卷积 在深度学习的世界里,卷积层就像人体中的毛细血管——数量庞大且至关重要。但鲜有人知,一个简单的3x3卷积在CPU上的执行路径,堪比北京地铁线路图般复杂。 卷积的数学本质 对于输入张…

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 (1)存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些,以及这些存储引擎是否支持事务能看出在MySQL中,只有InnoDB是支持事务的 &#x…

影视文件大数据高速分发方案

在当今的数字时代,影视行业的内容创作和传播方式经历了翻天覆地的变化。随着4K、8K高清视频的普及,以及虚拟现实(VR)和增强现实(AR)技术的发展,影视文件的数据量正以前所未有的速度增长。这就要求行业内的参与者必须拥有高效的大数据传输解决…

C语言教程——文件处理(2)

目录 前言 一、顺序读写函数(续) 1.1fprintf 1.2fscanf 1.3fwrite 1.4fread 二、流和标准流 2.1流 2.2标准流 2.3示例 三、sscanf和sprintf 3.1sprintf 3.2sscanf 四、文件的随机读写 4.1fseek 4.2ftell 4.3rewind 五、文件读取结束的…

建表注意事项(2):表约束,主键自增,序列[oracle]

没有明确写明数据库时,默认基于oracle 约束的分类 用于确保数据的完整性和一致性。约束可以分为 表级约束 和 列级约束,区别在于定义的位置和作用范围 复合主键约束: 主键约束中有2个或以上的字段 复合主键的列顺序会影响索引的使用,需谨慎设计 添加…

线性回归的损失和优化02

线性回归的损失和优化 学习目标 知道线性回归中损失函数知道使用正规方程对损失函数优化的过程知道使用梯度下降法对损失函数优化的过程 假设刚才的房子例子,真实的数据之间存在这样的关系: 真实关系: 真实房子价格 0.02中心区域的距离 0.…

年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战

原创内容第785篇,专注量化投资、个人成长与财富自由。 大年初五,年很快就过完了。 其实就是本身也只是休假一周,但是我们赋予了它太多意义。 周五咱们发布发aitrader v4.1,带了backtraderctp期货的实盘接口: aitra…

【数据结构】_链表经典算法OJ(力扣/牛客第二弹)

目录 1. 题目1:返回倒数第k个节点 1.1 题目链接及描述 1.2 解题思路 1.3 程序 2. 题目2:链表的回文结构 2.1 题目链接及描述 2.2 解题思路 2.3 程序 1. 题目1:返回倒数第k个节点 1.1 题目链接及描述 题目链接: 面试题 …

成绩案例demo

本案例较为简单,用到的知识有 v-model、v-if、v-else、指令修饰符.prevent .number .trim等、computed计算属性、toFixed方法、reduce数组方法。 涉及的功能需求有:渲染、添加、删除、修改、统计总分,求平均分等。 需求效果如下&#xff1a…

git基础使用--4---git分支和使用

文章目录 git基础使用--4---git分支和使用1. 按顺序看2. 什么是分支3. 分支的基本操作4. 分支的基本操作4.1 查看分支4.2 创建分支4.3 切换分支4.4 合并冲突 git基础使用–4—git分支和使用 1. 按顺序看 -git基础使用–1–版本控制的基本概念 -git基础使用–2–gti的基本概念…

Kafka下载

一、Kafka下载 下载地址:https://kafka.apache.org/downloads 二、Kafka安装 因为选择下载的是 .zip 文件,直接跳过安装,一步到位。 选择在任一磁盘创建空文件夹(不要使用中文路径),解压之后把文件夹内容…

nodejs:express + js-mdict 网页查询英汉词典,能播放声音

向 DeepSeek R1 提问: 我想写一个Web 前端网页,后台用 nodejs js-mdict, 实现在线查询英语单词 1. 项目结构 首先,创建一个项目目录,结构如下: mydict-app/ ├── public/ │ ├── index.html │ ├── st…

【自开发工具介绍】SQLSERVER的ImpDp和ExpDp工具01

1、开发背景 大家都很熟悉,Oracle提供了Impdp和ExpDp工具,功能很强大,可以进行db的导入导出的处理。但是对于Sqlserver数据库只是提供了简单的图形化的导出导入工具,在实际的开发和生产环境不太可能让用户在图形化的界面选择移行…

【Block总结】完全注意力Fully Attentional,同时捕捉空间和通道的注意力|即插即用

论文信息 标题: Fully Attentional Network for Semantic Segmentation论文链接: https://arxiv.org/pdf/2112.04108GitHub链接: https://github.com/maggiesong7/FullyAttentional 创新点 全注意力模块(FLA): 该模块能够在一个相似性图中同时捕捉空…