Linux之DNS域名解析服务

目录

Linux之DNS域名解析服务

概述

产生原因

作用

连接方式

因特网的域名结构

拓扑

分类

域名服务器类型

​编辑 

DNS域名解析过程

分类

解析图

搭建DNS域名解析服务器

概述

安装软件

bind服务中三个关键文件

主配置文件分析

一般需要修改三部分:

区域配置文件

正向解析资源文件

反向解析资源文件

案例

        案例1 --- 正向解析        

准备工作

DNS配置

​编辑

        案例2 --- 反向解析 

准备工作

DNS配置

部署DNS从服务器

作用

案例 --- 主从服务器

完全区域传送


Linux之DNS域名解析服务

概述

产生原因

        IP 地址 --- 是互联网上计算机唯一的逻辑地址,通过 IP 地址实现不同计算机之间的相互通信,每台联网计算机都需要通过 IP 地址来互相联系和分别,但由于 IP 地址是由一串容易混淆的数字串构成,人们很难记忆所有计算机的 IP 地址,这样对于我们日常工作生活访问不同网站是很困难的。

        基于这种背景,人们在 IP 地址的基础上又发展出了一种更易识别的符号化标识,这种标识由人们自行选择的字母和数字构成,相比 IP 地址更易被识别和记忆,逐渐代替 IP 地址成为互联网用户进行访问互联的主要入口。这种符号化标识就是域名

        域名虽然更易被用户所接受和使用,但计算机只能识别纯数字构成的 IP 地址,不能直接读取域名。因此要想达到访问效果,就需要将域名翻译成 IP 地址。而 DNS 域名解析承担的就是这种翻译效果

作用

        DNS(Domain Name System)是互联网上的一项服务,用于将域名和IP地址进行相互映射,使人更方便的访问互联网

        正向解析 --- 域名->IP

        反向解析 --- IP->域名

连接方式

        DNS使用53端口监听网络

        查看方法 --- DNS默认以UDP这个较快速的数据传输协议来查询,但没有查询到完整的信息时,就会再次以TCP协议重新查询则启动DNS时,会同时启动TCP以及UDP的port53

因特网的域名结构

拓扑

        由于因特网的用户数量较多,则因特网命名时采用层次树状结构的命名方法

        域名(domain name) --- 任何一个连接在因特网上的主机或路由器,都有一个唯一的层次结构的名称

        域(domain) --- 是名字空间中一个可被管理的划分结构

注意:

        域名只是逻辑概念,并不代表计算机所在的物理地点

分类

        国家顶级域名 --- 采用ISO3166的规定,如:cn代表中国,us代表美国,uk代表英国,等等。国家域名又常记为CCTLD(country code top-level domains,cc表示国家代码contry-code)

通用顶级域
com公司企业
net网络服务机构
org非营利组织
int国际组织
gov美国的政府部门
mil美国的军事部门

        基础结构域名(infrastructure domain) --- 这种顶级域名只有一个,即arpa,用于反向域名解析,因此称为反向域名

域名服务器类型

组织结构

 

        根域名服务器 --- 最高层次的域名服务器,所有的根域名服务器都知道所有的顶级域名服务器的域名和IP地址。本地域名服务器要对因特网上任何一个域名进行解析,只要自己无法解析,就首先求助根域名服务器。则根域名服务器是最重要的域名服务器。假定所有的根域名服务器都瘫痪了,那么整个DNS系统就无法工作。所以根域名服务器并不直接把待查询的域名直接解析出IP地址,而是告诉本地域名服务器下一步应当找哪一个顶级域名服务器进行查询

        顶级域名服务器 --- 负责管理在该顶级域名服务器注册的二级域名

        权限域名服务器 --- 负责一个“区”的域名服务器

        本地域名服务器 --- 本地域名服务器不属于域名服务器的层次结构,当主机发出DNS查询时,这个查询报文就发送给本地域名服务器

为了提高域名服务器的可靠性,DNS域名服务器都把数据复制到几个域名服务器来保存

        主服务器 --- 在特定区域内具有唯一性,负责维护该区域内的域名与 IP 地址之间的对应关系(真正干活的)

        从服务器 --- 从主服务器中获得域名与 IP 地址的对应关系并进行维护,以防主服务器宕机等情况(打下手的)

        缓存服务器 --- 通过向其他域名解析服务器查询获得域名与 IP 地址的对应关系,并将经常查询的域名信息保存到服务器本地,以此来提高重复查询时的效率,一般部署在企业内网的网关位置,用于加速用户的域名查询请求

DNS域名解析过程

分类

        递归解析 --- DNS服务器在收到用户发起的请求时,必须向用户返回一个准确的查询结果。如果DNS服务器本地没有存储与之对应的信息,则该服务器需要询问其他服务器,并将返回的查询结果提交给用户

        迭代解析(反复)--- DNS服务器在收到用户发起的请求时,并不直接回复查询结果,而是告诉另一台DNS服务器的地址,用户再向这台DNS服务器提交请求,依次反复,直到返回查询结果

解析图

过程分析:

        第一步 --- 在浏览器中输入www.163.com 域名,本地电脑会检查浏览器缓存中有没有这个域名对应的解析过的 IP 地址,如果缓存中有,这个解析过程就结束。

注意:

        浏览器缓存域名也是有限制的,不仅浏览器缓存大小有限制,而且缓存的时间也有限制,通常情况下为几分钟到几小时不等,域名被缓存的时间限制可以通过 TTL 属性来设置。这个缓存时间太长和太短都不太好,如果时间太长,一旦域名被解析到的 IP 有变化,会导致被客户端缓存的域名无法解析到变化后的 IP 地址,以致该域名不能正常解析,这段时间内有一部分用户无法访问网站。如果设置时间太短,会导致用户每次访问网站都要重新解析一次域名

        第二步 --- 如果浏览器缓存中没有数据,浏览器会查找操作系统缓存中是否有这个域名对应的 DNS 解析结果。其实操作系统也有一个[域名解析]的过程,在 Linux 中可以通过 /etc/hosts 文件来设置,而在 windows 中可以通过配置 C:\Windows\System32\drivers\etc\hosts 文件来设置,用户可以将任何域名解析到任何能够访问的 IP 地址。例如,我们在测试时可以将一个域名解析到一台测试服务器上,这样不用修改任何代码就能测试到单独服务器上的代码的业务逻辑是否正确。正是因为有这种本地 DNS 解析的规程,所以有黑客就可能通过修改用户的域名来把特定的域名解析到他指定的 IP 地址上,导致这些域名被劫持

        第三步 --- 前两步是在本地电脑上完成的,若无法解析时,就要用到我们网络配置中的 "DNS 服务器地址" 了。操作系统会把这个域名发送给这个本地 DNS 服务器。每个完整的内网通常都会配置本地 DNS 服务器,例如用户是在学校或工作单位接入互联网,那么用户的本地 DNS 服务器肯定在学校或工作单位里面。它们一般都会缓存域名解析结果,当然缓存时间是受到域名的失效时间控制的。大约 80% 的域名解析到这里就结束了,后续的 DNS 迭代和递归也是由本地 DNS 服务器负责

        第四步 --- 如果本地 DNS 服务器仍然没有命中,就直接到根 DNS 服务器请求解析

        第五步 --- 根 DNS 服务器返回给本地 DNS 域名服务器一个顶级 DNS 服务器地址,它是国际顶级域名服务器,如. com、.cn、.org 等,全球只有 13 台左右

        第六步 --- 本地 DNS 服务器再向上一步获得的顶级 DNS 服务器发送解析请求

        第七步 ---接受请求的顶级 DNS 服务器查找并返回此域名对应的 Name Server 域名服务器的地址,这个 Name Server 服务器就是我要访问的网站域名提供商的服务器,其实该域名的解析任务就是由域名提供商的服务器来完成。 比如我要访问 www.baidu.com,而这个域名是从 A 公司注册获得的,那么 A 公司上的服务器就会有 www.baidu.com 的相关信息

        第八步 --- 返回该域名对应的 IP 和 TTL 值,本地 DNS 服务器会缓存这个域名和 IP 的对应关系,缓存时间由 TTL 值控制

        第九步 --- Name Server 服务器收到查询请求后再其数据库中进行查询,找到映射关系后将其IP地址返回给本地DNS服务器

        第十步 --- 本地DNS服务器把解析的结果返回给本地电脑,本地电脑根据 TTL 值缓存在本地系统缓存中,域名解析过程结束在实际的 DNS 解析过程中,可能还不止这 10 步,如 Name Server 可能有很多级,或者有一个 GTM 来负载均衡控制,这都有可能会影响域名解析过程

注意:

        从客户端到本地DNS服务器是属于递归查询,而DNS服务器之间使用的交互查询就是迭代查询

        114.114.114.114国内移动、电信和联通通用的DNS,手机和电脑端都可以使用,干净无广告,解析成功率相对来说更高,国内用户使用的比较多,而且速度相对快、稳定,是国内用户上网常用的DNS。

        223.5.5.5223.6.6.6阿里提供的免费域名解析服务器地址

        8.8.8.8GOOGLE公司提供的DNS,该地址是全球通用的,相对来说,更适合国外以及访问国外网站的用户使用

搭建DNS域名解析服务器

概述

        BIND --- Berkeley Internet Name Domain ,伯克利因特网域名解析服务是一种全球使用最广泛的、最高效的、最安全的域名解析服务程序

安装软件

[root@localhost ~]# yum install bind -y

bind服务中三个关键文件

        /etc/named.conf  --- 主配置文件,共59行,去除注释和空行之和有效行数仅30行左右,用于设置bind服务程序的运行

        /etc/named.rfc1912.zones --- 区域配置文件(zone),用于保存域名IP地址对应关系文件的所在位置,类似于图书目录,当需要修改域名与IP映射关系时需要在此文件中查找相关文件位置

        /var/named 目录 --- 数据配置文件目录,该目录存储保存域名和IP地址映射关系的数据文件

主配置文件分析

主配置文件共4部分组成

        options{}

        logging{}

        zone{}

        include

常用参数

[root@localhost ~]# vim /etc/named.conf 
options {  # 全局参数设置listen-on port 53 { 127.0.0.1; }; # 重要,监听允许访问的ip与端口,可以使用IP地址、网段、所有主机(any)listen-on-v6 port 53 { ::1; };# 重要,监听允许访问的ipV6与端口directory       "/var/named";  # DNS数据目录位置,默认即可dump-file       "/var/named/data/cache_dump.db"; # 默认缓存文件位置,默认即可statistics-file "/var/named/data/named_stats.txt"; # DNS状态文件保存文件,默认即可memstatistics-file "/var/named/data/named_mem_stats.txt"; # 内存状态文件保存文件,默认即可secroots-file   "/var/named/data/named.secroots"; # 安全根服务器保存位置,默认即可recursing-file  "/var/named/data/named.recursing"; # 递归查询文件保存位置,默认即可allow-query     { localhost; };  # 重要,表示允许那些客户端进行访问,可以书写IP地址、网段、所有主机(any)recursion yes;   # 重要,允许递归查询,若删除则为迭代查询dnssec-validation yes; # 开启加密,默认即可managed-keys-directory "/var/named/dynamic";  # 指定目录中文件保存位置,用于管理密钥(DNSSEC)pid-file "/run/named/named.pid"; # pid文件保存路径,默认即可session-keyfile "/run/named/session.key"; # 会话密钥存储路径,自动生成,默认即可logging {  # 指定日志记录的分类及其存储目录channel default_debug {   # 设置日志输出方式file "data/named.run";  # 产生日志信息文件的位置severity dynamic;   # 日志级别};
};zone "." IN {    # zone 表示区域, "." 表示根,此处设置DNS根服务器的相关内容type hint;    # 表示服务器的类型为根file "named.ca";  # 用于保存dns根服务器信息的文件,存储路径/var/named/named.ca,一共有13台ipv4和13台ipv6根服务器信息
};include "/etc/named.rfc1912.zones";  # 表示当前DNS服务器的区域配置文件位置
include "/etc/named.root.key";   # 密钥存储文件位置

一般需要修改三部分:

  • listen-on port 53 { 127.0.0.1; } --- 即监听ip及端口

  • allow-query { localhost; } --- 允许那些客户端访问

  • recursion yes --- 是否开启递归查询

区域配置文件

作用

        /etc/named.rfc1912.zones文件为bind服务程序的区域配置文件,用来保存域名与IP地址映射关系文件的位置,是一系列功能模板的集合

正向解析

[root@localhost ~]# vim /etc/named.rfc1912.zones 
zone "localhost.localdomain" IN {  # 正向解析域名type master; # 服务类型:master表示主服务器,slave表示从服务器,hint根服务器file "named.localhost";  # 域名与IP地址规则文件存储位置allow-update { none; };  # 允许那些客户端动态更新本机域名解析
};# allow-update:允许更新解析库内容,一般关闭
# allow-query: 允许查询的主机,白名单
# allow-tranfter : 允许同步的主机,白名单,常用
# allow-recursion: 允许递归的主机

反向解析

zone "1.0.0.127.in-addr.arpa" IN { # 表示127.0.0.1的反向解析配置,IP地址需要倒置书写,只需书写网段即可type master;  file "named.loopback";  # 反向解析的规则文件保存位置allow-update { none; };
};

正向解析资源文件

[root@localhost ~]# vim /var/named/named.localhost 

$TTL 1D  # 设置生存周期时间,为1天,$表示宏定义
@       IN SOA  @ rname.invalid. (
# @ :表示zone域,现在表示域名,如baidu.com
# IN SOA : 授权信息开始
# rname.invalid. : 域名管理员的邮箱(不能使用@,使用点替代邮件分隔符@)0       ; serial  # 序列号,10位以内的整数1D      ; refresh # 更新频率为1天1H      ; retry   # 失败重试时间为1小时1W      ; expire  # 失效时间1周3H )    ; minimum # 缓存时间为3小时IN	NS	ns.域名.ns		IN	A	域名解析服务器IP地址
www		IN	A   域名解析服务器IP地址
bbs		IN	A   域名解析服务器IP地址
mail	IN	A   域名解析服务器IP地址# A:表示IPv4地址, AAAA表示IPv6地址

注意:

        推荐对该模板文件进行局部修改

域名解析记录分析

        A记录 --- A 代表 Address,用来指定域名对应的 IP 地址,如将 item.taobao.com 指定到 115.238.23.xxx,将 switch.taobao.com 指定到 121.14.24.xxx

        MX记录 --- Mail Exchange,就是可以将某个域名下的邮件服务器指向自己的 Mail Server,如 taobao.com 域名的 A 记录 IP 地址是 115.238.25.xxx,如果将 MX 记录设置为 115.238.25.xxx,即 xxx@taobao.com 的邮件路由,DNS 会将邮件发送到 115.238.25.xxx 所在的服务器,而正常通过 Web 请求的话仍然解析到 A 记录的 IP 地址

        NS记录 --- 为某个域名指定 DNS 解析服务器,也就是这个域名由指定的 IP 地址的 DNS 服务器取解析

        CNAME 记录 --- Canonical Name,即别名解析。所谓别名解析就是可以为一个域名设置一个或者多个别名,如将 aaa.com 解析到 bbb.net、将 ccc.com 也解析到 bbb.net,其中 bbb.net 分别是 aaa.com 和 ccc.com 的别名

        TXT 记录 ---为某个主机名或域名设置说明,如可以为 ddd.net 设置 TXT 记录为 "这是 XXX 的博客" 这样的说明

反向解析资源文件

[root@localhost ~]# vim /var/named/named.loopback 
$TTL 1D
@       IN SOA  @ rname.invalid. (0       ; serial1D      ; refresh1H      ; retry1W      ; expire3H )    ; minimumIN		 NS       ns.域名.   # 域名服务器记录,注意结尾的点
ns		 IN	  A   域名解析服务器的IP地址
IP地址	PTR      域名.   # PTR 指针记录,用于反向解析

案例

        案例1 --- 正向解析        

服务器IP客户端IP网址
192.168.149.128192.168.149.137www.joker1.com

准备工作

#关闭selinux与filewalld
[root@localhost ~]# setenforce 0
[root@localhost ~]# systemctl stop firewalld#服务端server安装DNS软件
[root@localhost ~]# yum install bind -y

# 服务端设置静态IP地址
[root@localhost ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.149.128/24 ipv4.gateway 192.168.149.2 ipv4.dns 114.114.114.114
[root@localhost ~]# nmcli c reload
[root@localhost ~]# nmcli c up ens160 

# 客户端设置静态IP地址
[root@localhost ~]# nmcli c modify ens33 ipv4.method manual ipv4.addresses 192.168.149.137/24 ipv4.gateway 192.168.149.2 ipv4.dns 114.114.114.114
[root@localhost ~]# nmcli c reload 
[root@localhost ~]# nmcli c up ens33 

DNS配置

        第一步:服务端操作,编辑DNS主配置文件

[root@localhost ~]# vim /etc/named.conf listen-on port 53 { any; };   # 监听所有主机的53端口allow-query     { any; }; # 允许所有客户端连接

        第二步:服务端操作,编辑区域配置文件,可以选择一个模板修改,也可以全部清空重新输入

[root@localhost ~]# vim /etc/named.rfc1912.zones 
zone "joker1.com" IN {    #区域名为joker1type master;file "joker1.com.zone";    #数据配置文件文件名为joker.com.zoneallow-update { none; };
};

        第三步:服务端操作,编辑数据配置文件,使用拷贝命令将正向解析数据配置文件的模板一份,在修改局部

[root@localhost ~]# cd /var/named/
[root@localhost named]# cp -a named.localhost joker1.com.zone     # 拷贝数据配置文件
[root@localhost named]# ls
data     joker1.com.zone  named.empty      named.loopback
dynamic  named.ca         named.localhost  slaves
[root@localhost named]# vim joker1.com.zone     # 修改为:
$TTL 1D
joker1.com.    IN SOA  ns.joker1.com.  andy.joker1.com. (0       ; serial1D      ; refresh1H      ; retry1W      ; expire3H )    ; minimum
joker1.com.            IN      NS      ns.joker1.com.
ns.joker1.com.         IN      A       192.168.149.128
www.joker1.com.        IN      A       192.168.149.128
bbs.joker1.com.        IN      A       192.168.149.128
ftp.joker1.com.        IN      A       192.168.149.128
www1.joker1.com.       IN      CNAME   www.joker1.com.

        第四步:重启服务

[root@localhost named]# systemctl restart named

        第五步:测试 --- 将客户端node1的网卡配置文件中DNS解析的地址修改为server端的IP地址,以后客户端node1的DNS申请交由服务端处理

#在客户端进行操作
[root@localhost ~]# vim /etc/NetworkManager/system-connections/ens33.nmconnection
[ipv4]
address1=192.168.149.137/24,192.168.48.2
dns=192.168.149.128;
method=manual

[root@localhost ~]# nmcli c reload # 重载配置文件
[root@localhost ~]# nmcli c up ens33 # 激活
连接已成功激活(D-Bus 活动路径:/org/freedesktop/NetworkManager/ActiveConnection/6)

#客户端测试
[root@localhost ~]# nslookup
[root@localhost ~]# nslookup 
> www.joker1.com> bbs.joker1.com> www1.joker1.com>  # ctrl+d退出交互模式

[root@localhost ~]# nslookup www.joker1.com[root@localhost ~]# host www.joker1.com[root@localhost ~]# dig 192.168.149.128 www.joker1.com

        案例2 --- 反向解析 

服务器IP客户端IP网址
192.168.149.128192.168.149.137www.joker1.com

准备工作

#关闭selinux与filewalld
[root@localhost ~]# setenforce 0
[root@localhost ~]# systemctl stop firewalld#服务端server安装DNS软件
[root@localhost ~]# yum install bind -y

# 服务端设置静态IP地址
[root@localhost ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.149.128/24 ipv4.gateway 192.168.149.2 ipv4.dns 114.114.114.114
[root@localhost ~]# nmcli c reload
[root@localhost ~]# nmcli c up ens160 

# 客户端设置静态IP地址
[root@localhost ~]# nmcli c modify ens33 ipv4.method manual ipv4.addresses 192.168.149.137/24 ipv4.gateway 192.168.149.2 ipv4.dns 192.168.149.128
[root@localhost ~]# nmcli c reload 
[root@localhost ~]# nmcli c up ens33 

DNS配置

        第一步:服务端操作,编辑主配置文件

[root@localhost ~]# vim /etc/named.conf listen-on port 53 { any; };   # 监听所有主机的53端口allow-query     { any; }; # 允许所有客户端连接

        第二步:辑区域配置文件,选择反向解析模版修改,注意 --- IP地址需要反向书写,且不写主机号

[root@localhost named]# vim /etc/named.rfc1912.zones 
zone "149.168.192.in-addr.arpa" IN {type master;file "192.168.149.arpa";allow-update { none; };
};# IP地址反向书写,只需书写网段号,再加上固定的扩展名.in-addr.arpa即可

        第三步: 服务端操作,编辑数据配置文件,复制一份反向解析模版(named.loopback),在修改局部参数

[root@localhost /]# cd /var/named/
[root@localhost named]# cp -a named.loopback 192.168.149.arpa
[root@localhost named]# vim 192.168.149.arpa
$TTL 1D
@       IN SOA  ns.joker2.com.  admin.joker2.com. (0       ; serial1D      ; refresh1H      ; retry1W      ; expire3H )    ; minimumNS      ns.joker2.com.
130     IN      PTR     ns.joker2.com.
130     IN      PTR     www.joker2.com.
130     IN      PTR     bbs.joker2.com.

        第四步:服务端操作,重启服务

[root@localhost named]# systemctl restart named

        第五步:客户端操作,测试

[root@localhost ~]# nslookup  192.168.149.128
128.149.168.192.in-addr.arpa	name = ns.joker2.com.
128.149.168.192.in-addr.arpa	name = bbs.joker2.com.
128.149.168.192.in-addr.arpa	name = www.joker2.com.

部署DNS从服务器

作用

        DNS作为重要的互联网基础设施服务,保证 DNS 域名解析服务的正常运转至关重要,只有这样才能提供稳定、快速且不间断的域名查询服务

        DNS域名解析服务中,从服务器可以从主服务器上获取指定的区域数据文件,从而起到备份解析记录与负载均衡的作用,因此通过部署从服务器可以减轻主服务器的负载压力,还可以提升用户的查询效率

注意 

  • 时间同步必须保持一致性

  • bind最好使用同一版本

案例 --- 主从服务器

完全区域传送

  • 一个区域文件复制到多个从服务器上的过程称为区域传送

  • 主服务器的所有信息全部复制到从服务器中,称为完全区域传送,即复制整个区域文件

实验说明

设备IP系统
主服务器192.168.48.128RHEL8.5
从服务器192.168.48.130RHEL8.5

第一步:两个主机恢复快照,安装软件,设置静态IP

#主服务器server主机操作
[root@localhost ~]# setenforce 0
[root@localhost ~]# systemctl stop firewalld
[root@localhost ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.149.128/24 ipv4.gateway 192.168.149.2 ipv4.dns 192.168.149.128 
[root@localhost ~]# nmcli c up ens160 
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/4)

#从服务器操作
[root@localhost ~]# setenforce 0
[root@localhost ~]# systemctl stop firewalld
[root@localhost ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.149.130/24 ipv4.gateway 192.168.149.2 ipv4.dns 192.168.149.130
[root@localhost ~]# nmcli c up ens160 

第二步:主服务端server操作,设置主配置文件

[root@localhost ~]# vim /etc/named.conf listen-on port 53 { any; };allow-query     { any; };

第三步:主服务端server操作,设置区域配置文件

[root@localhost ~]# vim /etc/named.rfc1912.zones 
zone "joker2.com" IN {    # 设置正向解析type master;file "joker2.com.zone";allow-update { 192.168.149.130; };
};# 重点:改为allow-transfer { 从服务器IP地址; } zone "149.168.192.in-addr.arpa" IN {    # 设置反向解析type master;file "192.168.149.arpa";allow-update { 192.168.149.131; };
};

 第四步:主服务端操作,设置正反向解析的数据配置文件

[root@localhost ~]# cd /var/named/
[root@localhost named]# cp -a named.localhost joker2.com.zone
[root@localhost named]# vim joker2.com.zone 
$TTL 1D
@       IN SOA  ns.joker2.com.  jenny.joker2.com. (0       ; serial1D      ; refresh1H      ; retry1W      ; expire3H )    ; minimumNS      ns.joker2.com.NS      slave.joker2.com.      # 增加从服务器的NS记录
ns      IN      A       192.168.48.128
www     IN      A       192.168.48.128
ftp     IN      A       192.168.48.128
slave   IN      A       192.168.48.130         # 增加从服务器的A记录

[root@localhost named]# pwd
/var/named
[root@localhost named]# cp -a named.loopback 192.168.149.arpa
[root@localhost named]# vim 192.168.149.arpa 
# 反向解析
$TTL 1D
@       IN SOA  ns.joker2.com.   jenny.joker2.com. (0       ; serial1D      ; refresh1H      ; retry1W      ; expire3H )    ; minimumNS      ns.joker2.com.NS      slave.joker2.com.
130     IN      PTR     www.joker2.com.
130     IN      PTR     ftp.joker2.com.
131     IN      PTR     slave.joker2.com.

第五步:主服务端操作,重启服务

[root@localhost named]# systemctl start named

第六步:从服务器端操作,修改主配置文件

[root@localhost ~]# vim /etc/named.conf listen-on port 53 { any; };allow-query     { any; };

第七步:从服务器端操作,修改区域配置文件,注意:此服务类型为slave(从)

zone "joker2.com" IN {type slave;    # 类型修改为从file "slaves/joker2.com.zone";     # 数据配置文件必须为slaves目录下masters { 192.168.149.128; };    # 增加主服务端的IP地址
};zone "149.168.192.in-addr.arpa" IN {type slave;file "slaves/192.168.149.arpa";masters { 192.168.149.130; };
};

第八步:从服务器端操作,重启服务,注意:当从服务器端重启后,会拉取文件

[root@localhost /]# cd /var/named/
[root@localhost named]# ls
data  dynamic  named.ca  named.empty  named.localhost  named.loopback  slaves
[root@localhost named]# ls slaves/
[root@localhost named]# systemctl start named
[root@localhost named]# ls slaves/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122790.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

核辐射检测仪电子测量方案

核辐射检测仪又名辐射检测仪,主要是安检、海关、实验室、金属探测公司等行业使用。但由于2023年8月24日排放核废水,导致海洋遭受核辐射污染,由于大海的净化能力有限,则会导致核废水有可能随着洋流的运动,会流至我国海域…

Python列表排序

介绍一个关于列表排序的sort方法,看下面的案例: """ 列表的sort方法来对列表进行自定义排序 """# 准备列表 my_list [["a", 33], ["b", 55], ["c", 11]]# 排序,基于带名函数 …

依赖导入失败场景和解决方案

在使用 Maven 构建项目时,可能会发生依赖项下载错误的情况,主要原因有以下几种: 下载依赖时出现网络故障或仓库服务器宕机等原因,导致无法连接至 Maven 仓库,从而无法下载依赖。 依赖项的版本号或配置文件中的版本号错…

c语言练习41:深入理解字符串函数strlen strcpy strcat

深入理解字符串函数strlen strcpy strcat 模拟实现&#xff1a;”strlen strcpy strcat strlen strcat: #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<assert.h> strlen 1.通过指针移动模拟 //int my_strlen(char* str) { // size_t c…

MySQL 枚举类型如何定义比较好 tinyint?enum?varchar?

enum介绍 先来介绍一下enum类型吧。 ENUM 是一个字符串对象&#xff0c;其值通常选自一个允许值列表中&#xff0c;该列表在表创建时的列规格说明中被明确地列举。&#xff08;建表的时候写到建表语句里&#xff09; 虽然表面是字符串值&#xff0c;但其内部是数字索引&…

Docker私有镜像仓库(Harbor)安装

Docker私有镜像仓库(Harbor)安装 1、什么是Harbor Harbor是类似与DockerHub 一样的镜像仓库。Harbor是由VMware公司开源的企业级的Docker Registry管理项目&#xff0c;它包括权限管理(RBAC)、LDAP、日志审核、管理界面、自我注册、镜像复制和中文支持等功能。Docker容器应用的…

手把手教会如何掌握Swagger

文章目录 前言一、Swagger重要组件及作用二、SpringBoot集成Swagger1.环境准备2.配置Swagger3.配置Swagger扫描接口4.配置API分组5.拓展&#xff1a;其他皮肤 三、常用注解1.接口注解2.方法及参数注解3.实体类注解效果如图&#xff1a; ![在这里插入图片描述](https://img-blog…

一种影像比对快速提取建筑物要素变化的方法

李和军1,2 李 敏3 李楚钰1,2 唐廷元1,2 胡日查4 (1. 北京市测绘设计研究院, 北京, 100038;2. 城市空间信息工程北京市重点实验室, 北京 100038;3. 北京市地质矿产勘查院信息中心, 北京, 100195;4. 内蒙古测绘地理信息中心, 内蒙古 呼和浩特, 010000) 摘 要&#xff1a;本文围绕…

【LeetCode每日一题合集】2023.8.28-2023.9.3(到家的最少跳跃次数)

文章目录 57. 插入区间823. 带因子的二叉树解法——递推 1654. 到家的最少跳跃次数(BFS&#xff0c;&#x1f6b9;最远距离上界的证明)1761. 一个图中连通三元组的最小度数2240. 买钢笔和铅笔的方案数解法1——完全背包解法2——枚举买了几支钢笔&#xff08;推荐解法&#xff…

qt简易网络聊天室 数据库的练习

qt网络聊天室 服务器&#xff1a; 配置文件.pro QT core gui networkgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exac…

Kafka3.0.0版本——文件清理策略

目录 一、文件清理策略1.1、文件清理策略的概述1.2、文件清理策略的官方文档1.3、日志超过了设置的时间如何处理1.3.1、delete日志删除&#xff08;将过期数据删除&#xff09;1.3.2、compact日志压缩 一、文件清理策略 1.1、文件清理策略的概述 Kafka 中默认的日志保存时间为…

Cento7 Docker-compose安装以及使用InfluxDB

InfluxDB是一个时序数据库&#xff0c;主要用于监控场景的数据支撑&#xff0c;对于那些写少读多按时间序查询数据的场景是非常适用的。接下来我们用docker-compose的形式安装。首先先装好docker,docker-compose命令 yum -y install yum-utils device-mapper-persistent-data…

【买华为云产品,返CSDN余额红包】,快来薅羊毛!

华为云828营销季火热进行中&#xff0c;9月15日前首次购买华为云产品官网任意一款产品&#xff0c;可获得相应比例的CSDN红包。 热门产品云服务器、域名、商标、主机安全等产品都在其中&#xff0c;任君挑选。 活动优惠价购买后还是获得相应比例余额红包&#xff0c;实际付费金…

游戏软件报错d3dx9_43.dll丢失怎么解决?这5个解决方法可以修复

我想和大家分享一个关于电脑问题的话题——d3dx9_43.dll丢失怎么解决。这个话题对于很多使用电脑的朋友来说&#xff0c;可能是一个非常棘手的问题。d3dx9_43.dll是 DirectX中非常重要的一部分&#xff0c;许多游戏和应用程序都需要它来正常运行。如果丢失了这个文件&#xff0…

Simulink建模与仿真(3)-Simulink 简介

分享一个系列&#xff0c;关于Simulink建模与仿真&#xff0c;尽量整理成体系 1、Simulink特点 Simulink是一个用来对动态系统进行建模、仿真和分析的软件包。使用Simulink来建模、分析和仿真各种动态系统(包括连续系统、离散系统和混合系统)&#xff0c;将是一件非常轻松的事…

万物互联:软件与硬件的协同之道

在当今数字化时代&#xff0c;我们身边的一切似乎都与计算机和互联网有关。从智能手机到智能家居设备&#xff0c;从自动驾驶汽车到工业生产线&#xff0c;无论我们走到哪里&#xff0c;都能看到软件和硬件的协同作用。本文将探讨这种协同作用&#xff0c;解释软件和硬件如何相…

ThreadLocal

ThreadLocal 参考&#xff1a;https://blog.csdn.net/u010445301/article/details/111322569 ThreadLocal简介 作用&#xff1a;实现线程范围内的局部变量&#xff0c;即ThreadLocal在一个线程中是共享的&#xff0c;在不同线程之间是隔离的。 原理&#xff1a;ThreadLocal存…

c高级day1(9.6) 离线软件安装,文件相关指令,文件权限相关指令,

作业: 使用cut截取出Ubuntu用户的家目录&#xff0c;要求&#xff1a;不能使用":"作为分割 不会 Xmind&#xff1a;

vue2踩坑之项目:生成二维码使用vue-print-nb打印二维码

1. vue2安装 npm install vue-print-nb --save vue3安装 npm install vue3-print-nb --save 2. //vue2 引入方式 全局 main.js import Print from vue-print-nb Vue.use(Print) ------------------------------------------------------------------------------------ //vue2 …

WEBGL(4):动态绘制点并根据详细自定义颜色

1 实现代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-width, …