2023全国大学生数学建模竞赛C题思路模型代码来啦

目录

一.选题建议先发布,思路模型代码论文第一时间更新,获取见文末名片

二.选题建议,后续思路代码论文

C 题 蔬菜类商品的自动定价与补货决策

各题分析

获取完整思路代码见此处名片


一.选题建议先发布,思路模型代码论文第一时间更新,获取见文末名片

二.选题建议,后续思路代码论文

思路代码模型论文icon-default.png?t=N7T8https://www.bilibili.com/video/BV1BH4y1X7TF/?buvid=Z54D8D5201DFFE8446E0929CB6DE5CF3C1F5&is_story_h5=false&mid=1uAkA2uLc2GvBgMfMTENag%3D%3D&p=1&plat_id=116&share_from=ugc&share_medium=ipad&share_plat=ios&share_source=COPY&share_tag=s_i×tamp=1694085016&unique_k=S6O26uc&up_id=1770130606

C 题 蔬菜类商品的自动定价与补货决策


在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差,
大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需
求情况每天进行补货。
由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00-
4:00,为此商家须在不确切知道具体单品和进货价格的情况下,做出当日各蔬菜品类的补货
决策。蔬菜的定价一般采用“成本加成定价”方法,商超对运损和品相变差的商品通常进行
打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类
商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10
月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。
附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该
商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据;
附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问
题:
问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各
品类及单品销售量的分布规律及相互关系。
问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成
定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,
使得商超收益最大。
问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可
售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023
年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各
品类蔬菜商品需求的前提下,使得商超收益最大。
问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,
这些数据对解决上述问题有何帮助,请给出你们的意见和理由。
 

各题分析

A题:定日镜场的优化设计

A题是数模类赛事很常见的物理类赛题,需要学习不少相关知识。一些数值计算的部分,应该还需要用到运筹学的多目标规划。

这里简单提一下第一问的思路,问题一要求计算定日镜场的年平均光学效率、年平均输出热功率和单位镜面积年平均输出热功率。针对这个问题,我们可以采用以下步骤和算法解题:

1确定定日镜位置:根据给定的定日镜中心位置,在圆形定日镜场中确定每个定日镜的坐标。

2计算太阳高度角和方位角:根据地理位置和日期时间,使用公式计算太阳的高度角和方位角,以获取入射光线的方向。

3计算法向直接辐射辐照度:利用所得到的太阳高度角和方位角,结合地球上垂直于太阳光线的平面单位面积上接收到的太阳辐射能量的公式,计算法向直接辐射辐照度。

4计算定日镜的光学效率:利用光学效率公式,分别计算阴影遮挡效率、余弦效率、大气透射率和集热器截断效率,并将它们相乘得到定日镜的光学效率。

5计算定日镜场的输出热功率:根据法向直接辐射辐照度和定日镜的光学效率,计算每个定日镜的输出热功率,并将它们相加得到定日镜场的输出热功率。

6计算单位镜面积年平均输出热功率:将定日镜场的输出热功率除以定日镜总面积,得到单位镜面积年平均输出热功率。

在解题过程中,可能需要使用数值计算和优化算法来处理复杂的计算和问题求解。例如,可以使用数值积分方法来估计法向直接辐射辐照度,使用迭代或优化算法来确定定日镜的最佳位置和尺寸等。

这道题专业性较高,后续账号会在出本题具体思路分析时,再进行具体分析与建模。开放程度低,难度适中。但这类赛题通常门槛较高,小白/非相关专业同学谨慎选择。答案的正确与否会对最终成绩产生较大影响。建议物理、电气、自动化等相关专业选择。

B题:多波束测线问题

今年的国赛题目很奇怪,可能是因为chatgpt等一系列AI工具的普及,B题与A题一样,均为物理类题目,这两道题目的类型很相似。往年一般会有一个趣味性一点的题目。但B题可以明显看出是对数学、统计学相关专业较为友好。B题需要用到不少模拟仿真相关算法,推荐利用lingo进行求解。

这里就不再进行更细致的分析了,我们会在晚上发布相关具体思路,可以关注下。

这道题存在最优解,开放程度低,难度适中。大家选择此题最好在做完后,线上线下对对答案。推荐统计学、数学、物理等专业同学选择。

C题:蔬菜类商品的自动定价与补货决策

这道题就是很多同学在训练的时候经常做的题目类型了,属于大数据、数据分析类题目,同时也是团队擅长的题目。需要一定的建模能力,和其他赛事赛题类型类似,建议大家(各个专业均可)进行选择。

题目需要建立数学模型,大家可以使用评价类算法,比如灰色综合评价法、模糊综合评价法对各个指标建立联系。

第一问前大家需要对数据进行分析和数值化处理,也就是EDA(探索性数据分析)。对于数值型数据,大家用归一化、去除异常值等方式就可以进行数据预处理。而对于非数值型数据进行量化,大家可以使用以下方法:

1

而第一问可以给小白先提示下,后续我们还会更新具体的每问思路。第一问是需要我们做相关性分析,看那几个指标之间的相关系数是否高,如果高则代表影响较大,低代表影响较小。这里可以用热力图进行绘制,从而可视化影响程度。另外,对于分布规律,我的建议是简单一点做,就用统计描述:计算每个蔬菜品类及单品的销售总量、平均销售量、最大销售量和最小销售量等统计指标,以了解它们的整体情况。

如果可以的话,也可以用聚类算法:根据蔬菜品类或单品的销售特征,可以使用聚类分析方法(如K-means聚类)将其划分为不同的群组,进一步了解不同群组之间的销售量分布规律。

由于这篇是选题建议,详细思路可以看我的后续文章/视频。就不赘述了。数据集怎么分析,可视化代码什么的,后续会更新。这道题目开放度较高,难度较易,是本次比赛本科组获奖的首选题目。推荐所有专业同学选择门槛较低且开放度也相对较高。

获取完整思路代码见此处名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/123849.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入了解苹果证书及其分类,提升iOS应用开发效率

目录 1. 企业证书 2. 开发者证书 开发证书: 发布证书: 3. 推送证书 4. 分发证书 5. MDM证书 摘要:本文将详细介绍苹果证书的作用及分类,包括企业证书、开发者证书、推送证书、分发证书和MDM证书,帮助开发者了解…

webrtc的FULL ICE和Lite ICE

1、ICE的模式 分为FULL ICE和Lite ICE: FULL ICE:是双方都要进行连通性检查,完成的走一遍流程。 Lite ICE: 在FULL ICE和Lite ICE互通时,只需要FULL ICE一方进行连通性检查, Lite一方只需回应response消息。这种模式对于部署在公网…

数学建模--二次规划型的求解的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 #二次规划模型 #二次规划我们需要用到函数:Cvxopt.solvers.qp(P,q,G,h,A,b) #首先解决二次规划问题和解决线性规划问题的流程差不多 """ 求解思路如下: 1.针对给定的代求式,转化成标准式…

简明SQL截断和偏移指南:掌握LIMIT实现数据筛选

以下是用到的表。 截断 LIMIT 用于限制查询结果返回的行数,即最多返回多少行数据。 例如,返回前两行数据。 例如,从第二个数据开始返回两条数据(从0开始计算)。 偏移 OFFSET 用于指定查询结果的起始位置&#xff0c…

PHP8中查询数组中指定元素-PHP8知识详解

php是使用最广泛的web编程语言,数组是一个数据集合,数组是一种非常常用的数据类型。在操作数组时,有时我们需要查询数组中是否有某个指定元素。在实际的程序开发中,我们用到了下列方法来查询数组中指定的元素:使用arra…

matplotlib 使用

import matplotlib.pyplot as plt %matplotlib inlineplt.figure()#创建一个画布 plt.plot([1, 0, 9], [4, 5, 6])#点数据,横坐标,纵坐标,相当于(1,4)(0,5)(9…

全力助推徐工集团转型升级,迅镭激光智能装备展现硬核实力!

在江苏省徐州市,工程机械产业集群在成功入选首批国家先进制造业集群后,正加快向世界级先进制造业集群跃升。徐工集团作为徐州市“343”创新产业集群“一号产业”链主企业,正发挥着“领头雁”作用。 为了把徐州市“全球工程机械之都”名片擦得…

Python基于Mirai开发的QQ机器人保姆式教程(亲测可用)

在本教程中,我们将使用Python和Mirai来开发一个QQ机器人,本文提供了三个教学视频,包教包会,本文也很贴心贴了代码和相关文件。话不多说,直接开始教学。 目录 一、安装配置MIrai 图片验证码报错: 二、机器…

java - lua - redis 完成商品库存的删减

java调用lua脚本完成对商品库存的管理 主页链接 微风轻吟挽歌的主页 如若有帮助请帮忙点赞 //lua脚本 获取到内存不够的商品StringBuilder sb new StringBuilder();//定义一个数组存储可能缺少库存的值sb.append(" local table {} ");//获取值sb.append(" …

2023全国大学生数学建模ABCDE选题建议,思路模型,小白要怎么选?难度怎么样

首先最重要的&#xff0c;难度C<B<A&#xff0c;D、E题推荐选E题 大家可以查看我们的视频讲解&#xff0c;在这里&#xff1a;【2023全国大学生数学建模竞赛选题建议&#xff0c;难度分析&#xff0c;小白应该怎么选】 https://b23.tv/S6O26uc 选题建议视频播放​b23.t…

【Git】01-Git基础

文章目录 Git基础1. 简述1.1 版本管理演变1.2 Git的特点 2. Git安装2.1 安装文档2.1 配置user信息 3. 创建仓库3.1 场景3.2 暂存区和工作区 4. 重命名5. 常用git log版本历史5.1 查看当前分支日志5.2 简洁查看日志5.3 查看最近指定条数的日志 6. 通过图形界面工具查看版本7. 探…

《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3稳定性

在当今的互联网时代,稳定性是所有系统和应用程序的关键要素。无论是大型数据中心还是个人电脑,稳定性都是保证正常运行和用户体验的基础。在这个背景下,我们来谈谈 Milvus,一个开源的向量数据库,它在 2.1.0 版本中引入了内存多副本的概念。 Milvus 是一个开源的向量数据库…

Golang专题精进

Golang专题精进 Golang单元测试Golang错误处理Golang正则表达式Golang反射Golang验证码Golang日期时间处理库CarbonGolang发送邮件库emailGolang log日志Golang log日志框架logrusGolang加密和解密应用Golang访问权限控制框架casbinGolang使用swagger生成api接口文档Golang jwt…

抓包工具fiddler的基础知识

目录 简介 1、作用 2、使用场景 3、http报文分析 3.1、请求报文 3.2、响应报文 4、介绍fiddler界面功能 4.1、AutoResponder(自动响应器) 4.2、Composer(设计请求) 4.3、断点 4.4、弱网测试 5、app抓包 简介 fiddler是位于客户端和服务端之间的http代理 1、作用 监控浏…

Python实现猎人猎物优化算法(HPO)优化卷积神经网络分类模型(CNN分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…

stm32f4_奇怪的bug_串口数据错乱,一个串口收到另一个串口的数据

1、开发环境简介 芯片型号&#xff1a;stm32f407igt6 官方库函数&#xff1a;HAL库 2、bug现象描述和原因推测 使用了2个串口&#xff0c;一个是串口5-波特率115200&#xff0c;一个是串口4-波特率9600&#xff0c;但是串口4时不时会收到上一次发给串口5的数据。不是同一个串…

Java8特性-Lambda表达式

&#x1f4d5;概述 在Java 8中引入了Lambda表达式作为一项重要的语言特性&#xff0c;可以堪称是一种语法糖。Lambda表达式使得以函数式编程的方式解决问题变得更加简洁和便捷。 Lambda表达式的语法如下&#xff1a; (parameters) -> expression (参数) -> {代码}其中&…

算法笔记:堆

【如无特别说明&#xff0c;皆为最小二叉堆】 1 介绍 2 特性 结构性&#xff1a;符合完全二叉树的结构有序性&#xff1a;满足父节点小于子节点&#xff08;最小化堆&#xff09;或父节点大于子节点&#xff08;最大化堆&#xff09; 3 二叉堆的存储 顺序存储 二叉堆的有序…

c高级 day2

1.写一个1.sh脚本&#xff0c;将以下内容放到脚本中&#xff1a; 在家目录下创建目录文件&#xff0c;dir 在dir下创建dir1和dir2 把当前目录下的所有文件拷贝到dir1中&#xff0c; 把当前目录下的所有脚本文件拷贝到dir2中 把dir2打包并压缩为dir2.tar.xz 再把dir2.tar.…

TypeScript断言

什么是断言&#xff1f; 一个编译时语法&#xff0c;用于告诉编译器用户比编译器更加确定变量的类型&#xff0c;进而解除编译错误&#xff0c;类型断言有点类似于其他语言的类型转换&#xff0c;但它没有运行时的影响&#xff0c;只是在编译阶段起作用。所以&#xff0c;即使通…