PaddleOCR学习笔记1-初步尝试

尝试使用PaddleOCR方法,如何使用自定义的模型方法,参数怎么配置,图片识别尝试简单提高识别率方法。

目前仅仅只是初步学习下如何使用PaddleOCR的方法。

一,测试识别图片:

1.png :

正确文本内容为“哲学可以帮助辩别现代科技创新发展的方向

二,测试代码:

paddleocr_test2.py :
结合使用了之前学习的PIL和NumPy库,自定义模型实际还是使用的官网提供的最新版本模型,我还没学习如何自己训练模型,只是为了学习如何使用参数变量。
from paddleocr import PaddleOCR
from PIL import Image,ImageDraw
import numpy as np'''
自定义模型测试ocr方法
'''
def test_model_ocr(img):# paddleocr 目前支持的多语言语种可以通过修改lang参数进行切换# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`# 使用CPU预加载,不用GPU# 模型路径下必须包含model和params文件,目前开源的v3版本模型 已经是识别率很高的了# 还要更好的就要自己训练模型了。ocr = PaddleOCR(det_model_dir='./inference/ch_PP-OCRv3_det_infer/',rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/',cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/',use_angle_cls=True, lang="ch", use_gpu=False)# 识别图片文件result = ocr.ocr(img, cls=True)return result# 打印所有结果信息
def print_ocr_result(result):# print(result)for index in range(len(result)):rst = result[index]for line in rst:points = line[0]text = line[1][0]score = line[1][1]print('points : ', points)print('text : ', text)print('score : ', score)print('==========================================')# 转换图片
def convert_image(image, threshold=None):# 阈值 控制二值化程度,不能超过256,[200, 256]# 适当调大阈值,可以提高文本识别率,经过测试有效。if threshold is None:threshold = 200print('threshold : ', threshold)# 首先进行图片灰度处理image = image.convert("L")pixels = image.load()# 在进行二值化for x in range(image.width):for y in range(image.height):if pixels[x, y] > threshold:pixels[x, y] = 255else:pixels[x, y] = 0return imageif __name__ == "__main__":img_path = "1.png"# 1,直接识别图片文本print('1,直接识别图片文本')result1 = test_model_ocr(img_path)# 打印所有结果信息print_ocr_result(result1)# 2,转换为ndarray数组 识别图片文本print('2,转换为ndarray数组 识别图片文本')# 打开图片img1 = Image.open(img_path)# Image图像转换为ndarray数组img_1 = np.array(img1)# print(img_1)result2 = test_model_ocr(img_1)# 打印所有结果信息print_ocr_result(result2)# 3,转换图片, 识别图片文本print('3,转换图片,阈值=200时,再转换为ndarray数组, 识别图片文本')# 转换图片img2 = convert_image(img1, 200)# img2.show()# img2.save("11.png")# Image图像转换为ndarray数组img_2 = np.array(img2)# print(img_2)# 识别图片result3 = test_model_ocr(img_2)# 打印所有结果信息print_ocr_result(result3)# 4,转换图片, 识别图片文本print('4,转换图片,阈值=220时,再转换为ndarray数组, 识别图片文本')# 转换图片img3 = convert_image(img1, 220)# Image图像转换为ndarray数组img_3 = np.array(img3)# 识别图片result4 = test_model_ocr(img_3)# 打印所有结果信息print_ocr_result(result4)

三,测试结果:

1,直接识别图片文本
[2023/06/25 10:38:41] ppocr DEBUG: Namespace(alpha=1.0, benchmark=False, beta=1.0, cls_batch_num=6, cls_image_shape='3, 48, 192', cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/', cls_thresh=0.9, cpu_threads=10, crop_res_save_dir='./output', det=True, det_algorithm='DB', det_box_type='quad', det_db_box_thresh=0.6, det_db_score_mode='fast', det_db_thresh=0.3, det_db_unclip_ratio=1.5, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_east_score_thresh=0.8, det_limit_side_len=960, det_limit_type='max', det_model_dir='./inference/ch_PP-OCRv3_det_infer/', det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, det_pse_thresh=0, det_sast_nms_thresh=0.2, det_sast_score_thresh=0.5, draw_img_save_dir='./inference_results', drop_score=0.5, e2e_algorithm='PGNet', e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_limit_side_len=768, e2e_limit_type='max', e2e_model_dir=None, e2e_pgnet_mode='fast', e2e_pgnet_score_thresh=0.5, e2e_pgnet_valid_set='totaltext', enable_mkldnn=False, fourier_degree=5, gpu_mem=500, help='==SUPPRESS==', image_dir=None, image_orientation=False, ir_optim=True, kie_algorithm='LayoutXLM', label_list=['0', '180'], lang='ch', layout=True, layout_dict_path=None, layout_model_dir=None, layout_nms_threshold=0.5, layout_score_threshold=0.5, max_batch_size=10, max_text_length=25, merge_no_span_structure=True, min_subgraph_size=15, mode='structure', ocr=True, ocr_order_method=None, ocr_version='PP-OCRv3', output='./output', page_num=0, precision='fp32', process_id=0, re_model_dir=None, rec=True, rec_algorithm='SVTR_LCNet', rec_batch_num=6, rec_char_dict_path='C:\\Users\\86159\\AppData\\Local\\Programs\\Python\\Python37\\lib\\site-packages\\paddleocr\\ppocr\\utils\\ppocr_keys_v1.txt', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/', recovery=False, save_crop_res=False, save_log_path='./log_output/', scales=[8, 16, 32], ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ser_model_dir=None, show_log=True, sr_batch_num=1, sr_image_shape='3, 32, 128', sr_model_dir=None, structure_version='PP-StructureV2', table=True, table_algorithm='TableAttn', table_char_dict_path=None, table_max_len=488, table_model_dir=None, total_process_num=1, type='ocr', use_angle_cls=True, use_dilation=False, use_gpu=False, use_mp=False, use_npu=False, use_onnx=False, use_pdf2docx_api=False, use_pdserving=False, use_space_char=True, use_tensorrt=False, use_visual_backbone=True, use_xpu=False, vis_font_path='./doc/fonts/simfang.ttf', warmup=False)
[2023/06/25 10:38:41] ppocr DEBUG: dt_boxes num : 1, elapse : 0.022063255310058594
[2023/06/25 10:38:41] ppocr DEBUG: cls num  : 1, elapse : 0.007994413375854492
[2023/06/25 10:38:42] ppocr DEBUG: rec_res num  : 1, elapse : 0.22030949592590332
points :  [[17.0, 14.0], [514.0, 14.0], [514.0, 33.0], [17.0, 33.0]]
text :  哲学可以帮助辨别现代科技创新发展的方声
score :  0.8344171047210693
==========================================
2,转换为ndarray数组 识别图片文本
[2023/06/25 10:38:42] ppocr DEBUG: Namespace(alpha=1.0, benchmark=False, beta=1.0, cls_batch_num=6, cls_image_shape='3, 48, 192', cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/', cls_thresh=0.9, cpu_threads=10, crop_res_save_dir='./output', det=True, det_algorithm='DB', det_box_type='quad', det_db_box_thresh=0.6, det_db_score_mode='fast', det_db_thresh=0.3, det_db_unclip_ratio=1.5, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_east_score_thresh=0.8, det_limit_side_len=960, det_limit_type='max', det_model_dir='./inference/ch_PP-OCRv3_det_infer/', det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, det_pse_thresh=0, det_sast_nms_thresh=0.2, det_sast_score_thresh=0.5, draw_img_save_dir='./inference_results', drop_score=0.5, e2e_algorithm='PGNet', e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_limit_side_len=768, e2e_limit_type='max', e2e_model_dir=None, e2e_pgnet_mode='fast', e2e_pgnet_score_thresh=0.5, e2e_pgnet_valid_set='totaltext', enable_mkldnn=False, fourier_degree=5, gpu_mem=500, help='==SUPPRESS==', image_dir=None, image_orientation=False, ir_optim=True, kie_algorithm='LayoutXLM', label_list=['0', '180'], lang='ch', layout=True, layout_dict_path=None, layout_model_dir=None, layout_nms_threshold=0.5, layout_score_threshold=0.5, max_batch_size=10, max_text_length=25, merge_no_span_structure=True, min_subgraph_size=15, mode='structure', ocr=True, ocr_order_method=None, ocr_version='PP-OCRv3', output='./output', page_num=0, precision='fp32', process_id=0, re_model_dir=None, rec=True, rec_algorithm='SVTR_LCNet', rec_batch_num=6, rec_char_dict_path='C:\\Users\\86159\\AppData\\Local\\Programs\\Python\\Python37\\lib\\site-packages\\paddleocr\\ppocr\\utils\\ppocr_keys_v1.txt', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/', recovery=False, save_crop_res=False, save_log_path='./log_output/', scales=[8, 16, 32], ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ser_model_dir=None, show_log=True, sr_batch_num=1, sr_image_shape='3, 32, 128', sr_model_dir=None, structure_version='PP-StructureV2', table=True, table_algorithm='TableAttn', table_char_dict_path=None, table_max_len=488, table_model_dir=None, total_process_num=1, type='ocr', use_angle_cls=True, use_dilation=False, use_gpu=False, use_mp=False, use_npu=False, use_onnx=False, use_pdf2docx_api=False, use_pdserving=False, use_space_char=True, use_tensorrt=False, use_visual_backbone=True, use_xpu=False, vis_font_path='./doc/fonts/simfang.ttf', warmup=False)
[2023/06/25 10:38:42] ppocr DEBUG: dt_boxes num : 1, elapse : 0.018141746520996094
[2023/06/25 10:38:42] ppocr DEBUG: cls num  : 1, elapse : 0.007776021957397461
[2023/06/25 10:38:43] ppocr DEBUG: rec_res num  : 1, elapse : 0.23012638092041016
points :  [[16.0, 14.0], [514.0, 14.0], [514.0, 33.0], [16.0, 33.0]]
text :  哲学可以帮助辨别现代科技创新发展的方户
score :  0.8683586120605469
==========================================
3,转换图片,阈值=200时,再转换为ndarray数组, 识别图片文本
threshold :  200
[2023/06/25 10:38:43] ppocr DEBUG: Namespace(alpha=1.0, benchmark=False, beta=1.0, cls_batch_num=6, cls_image_shape='3, 48, 192', cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/', cls_thresh=0.9, cpu_threads=10, crop_res_save_dir='./output', det=True, det_algorithm='DB', det_box_type='quad', det_db_box_thresh=0.6, det_db_score_mode='fast', det_db_thresh=0.3, det_db_unclip_ratio=1.5, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_east_score_thresh=0.8, det_limit_side_len=960, det_limit_type='max', det_model_dir='./inference/ch_PP-OCRv3_det_infer/', det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, det_pse_thresh=0, det_sast_nms_thresh=0.2, det_sast_score_thresh=0.5, draw_img_save_dir='./inference_results', drop_score=0.5, e2e_algorithm='PGNet', e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_limit_side_len=768, e2e_limit_type='max', e2e_model_dir=None, e2e_pgnet_mode='fast', e2e_pgnet_score_thresh=0.5, e2e_pgnet_valid_set='totaltext', enable_mkldnn=False, fourier_degree=5, gpu_mem=500, help='==SUPPRESS==', image_dir=None, image_orientation=False, ir_optim=True, kie_algorithm='LayoutXLM', label_list=['0', '180'], lang='ch', layout=True, layout_dict_path=None, layout_model_dir=None, layout_nms_threshold=0.5, layout_score_threshold=0.5, max_batch_size=10, max_text_length=25, merge_no_span_structure=True, min_subgraph_size=15, mode='structure', ocr=True, ocr_order_method=None, ocr_version='PP-OCRv3', output='./output', page_num=0, precision='fp32', process_id=0, re_model_dir=None, rec=True, rec_algorithm='SVTR_LCNet', rec_batch_num=6, rec_char_dict_path='C:\\Users\\86159\\AppData\\Local\\Programs\\Python\\Python37\\lib\\site-packages\\paddleocr\\ppocr\\utils\\ppocr_keys_v1.txt', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/', recovery=False, save_crop_res=False, save_log_path='./log_output/', scales=[8, 16, 32], ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ser_model_dir=None, show_log=True, sr_batch_num=1, sr_image_shape='3, 32, 128', sr_model_dir=None, structure_version='PP-StructureV2', table=True, table_algorithm='TableAttn', table_char_dict_path=None, table_max_len=488, table_model_dir=None, total_process_num=1, type='ocr', use_angle_cls=True, use_dilation=False, use_gpu=False, use_mp=False, use_npu=False, use_onnx=False, use_pdf2docx_api=False, use_pdserving=False, use_space_char=True, use_tensorrt=False, use_visual_backbone=True, use_xpu=False, vis_font_path='./doc/fonts/simfang.ttf', warmup=False)
[2023/06/25 10:38:43] ppocr DEBUG: dt_boxes num : 1, elapse : 0.017957448959350586
[2023/06/25 10:38:43] ppocr DEBUG: cls num  : 1, elapse : 0.008005380630493164
[2023/06/25 10:38:43] ppocr DEBUG: rec_res num  : 1, elapse : 0.21948766708374023
points :  [[16.0, 14.0], [513.0, 14.0], [513.0, 33.0], [16.0, 33.0]]
text :  哲学可以帮助孵别现代科技创新发展的方向
score :  0.8875740170478821
==========================================
4,转换图片,阈值=220时,再转换为ndarray数组, 识别图片文本
threshold :  220
[2023/06/25 10:38:43] ppocr DEBUG: Namespace(alpha=1.0, benchmark=False, beta=1.0, cls_batch_num=6, cls_image_shape='3, 48, 192', cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/', cls_thresh=0.9, cpu_threads=10, crop_res_save_dir='./output', det=True, det_algorithm='DB', det_box_type='quad', det_db_box_thresh=0.6, det_db_score_mode='fast', det_db_thresh=0.3, det_db_unclip_ratio=1.5, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_east_score_thresh=0.8, det_limit_side_len=960, det_limit_type='max', det_model_dir='./inference/ch_PP-OCRv3_det_infer/', det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, det_pse_thresh=0, det_sast_nms_thresh=0.2, det_sast_score_thresh=0.5, draw_img_save_dir='./inference_results', drop_score=0.5, e2e_algorithm='PGNet', e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_limit_side_len=768, e2e_limit_type='max', e2e_model_dir=None, e2e_pgnet_mode='fast', e2e_pgnet_score_thresh=0.5, e2e_pgnet_valid_set='totaltext', enable_mkldnn=False, fourier_degree=5, gpu_mem=500, help='==SUPPRESS==', image_dir=None, image_orientation=False, ir_optim=True, kie_algorithm='LayoutXLM', label_list=['0', '180'], lang='ch', layout=True, layout_dict_path=None, layout_model_dir=None, layout_nms_threshold=0.5, layout_score_threshold=0.5, max_batch_size=10, max_text_length=25, merge_no_span_structure=True, min_subgraph_size=15, mode='structure', ocr=True, ocr_order_method=None, ocr_version='PP-OCRv3', output='./output', page_num=0, precision='fp32', process_id=0, re_model_dir=None, rec=True, rec_algorithm='SVTR_LCNet', rec_batch_num=6, rec_char_dict_path='C:\\Users\\86159\\AppData\\Local\\Programs\\Python\\Python37\\lib\\site-packages\\paddleocr\\ppocr\\utils\\ppocr_keys_v1.txt', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/', recovery=False, save_crop_res=False, save_log_path='./log_output/', scales=[8, 16, 32], ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ser_model_dir=None, show_log=True, sr_batch_num=1, sr_image_shape='3, 32, 128', sr_model_dir=None, structure_version='PP-StructureV2', table=True, table_algorithm='TableAttn', table_char_dict_path=None, table_max_len=488, table_model_dir=None, total_process_num=1, type='ocr', use_angle_cls=True, use_dilation=False, use_gpu=False, use_mp=False, use_npu=False, use_onnx=False, use_pdf2docx_api=False, use_pdserving=False, use_space_char=True, use_tensorrt=False, use_visual_backbone=True, use_xpu=False, vis_font_path='./doc/fonts/simfang.ttf', warmup=False)
[2023/06/25 10:38:44] ppocr DEBUG: dt_boxes num : 1, elapse : 0.019538402557373047
[2023/06/25 10:38:44] ppocr DEBUG: cls num  : 1, elapse : 0.00800013542175293
[2023/06/25 10:38:44] ppocr DEBUG: rec_res num  : 1, elapse : 0.22036981582641602
points :  [[15.0, 14.0], [515.0, 14.0], [515.0, 33.0], [15.0, 33.0]]
text :  哲学可以帮助辩别现代科技创新发展的方向
score :  0.8834166526794434
==========================================

通过测试结果可以看出,图片经过二值化转换后,再转换为ndarray数组,最后再调用PaddlerOCR识别方法,返回的识别文本最为准确。

之前也了解过OCR识别的步骤流程,后面还要继续深入学习下,从这几个方面提高图片识别率。

=====================================================================

步骤流程:

1. 图像输入、预处理:

  不同的图像格式有不同的存储、压缩方式,目前有OpenCV、CxImage等。

2. 二值化:

  如今数码摄像头拍摄的图片大多是彩色图像,彩色图像所含信息量巨大,不适用于OCR技术。为了让计算机更快的、更好地进行OCR相关计算,

  我们需要先对彩色图进行处理,使图片只剩下前景信息与背景信息。二值化也可以简单地将其理解为“黑白化”。

3. 图像降噪:

  对于不同的图像根据噪点的特征进行去噪的过程称为降噪。

4. 倾斜校正:

  由于一般用户,在拍照文档时,难以拍摄得完全符合水平平齐与竖直平齐(我本人就经常拍的歪歪扭扭),

  因此拍照出来的图片不可避免的产生倾斜,这就需要图像处理软件进行校正。 

5. 版面分析:

  将文档图片分段落,分行的过程称为版面分析。 

6. 字符切割:

  由于拍照、书写条件的限制,经常造成字符粘连、断笔,直接使用此类图像进行OCR分析将会极大限制OCR性能。

  因此需要进行字符切割,即:将不同字符之间分割开。 

7. 字符识别:

  早期以模板匹配为主,后期以结合深度网络的特征提取为主。版面还原:将识别后的文字像原始文档图片那样排列,

  段落、位置、顺序不变地输出到Word文档、PDF文档等,这一过程称为版面还原。

8. 后期处理:根据特定的语言上下文的关系,对识别结果进行校正。

9. 输出:将识别出的字符以某一格式的文本输出。

=====================================================================

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/126790.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【关于Java:认识异常】

文章目录 一、1. 异常概念与体系结构1.1 异常的概念1.2 常见的异常1.算数异常2.数组越界异常3.空指针异常 1.3 异常的体系结构1.4 异常的分类1. 编译时异常2. 运行时异常(RuntimeException) 二、 异常的处理方式2.1 防御式编程2.2 EAFP:(异常…

【分类】分类性能评价

评价指标 1、准确率、召回率、精确率、F-度量、ROC ​ 属于各类的样本的并不是均一分布,甚至其出现概率相差很多个数量级,这种分类问题称为不平衡类问题。在不平衡类问题中,准确率并没有多大意义,我们需要一些别的指标。 ​ 通…

pyspark 系统找不到指定的路径; \Java\jdk1.8.0_172\bin\java

使用用具PyCharm 2023.2.1 1:pyspark 系统找不到指定的路径, Java not found and JAVA_HOME environment variable is not set. Install Java and set JAVA_HOME to point to the Java installation directory. 解决方法:配置正确环境变量…

万字C语言之分支语句和循环语句

前言: 📕作者简介:热爱编程的小七,致力于C、Java、Python等多编程语言,热爱编程和长板的运动少年! 📘相关专栏Java基础语法,JavaEE初阶,数据库,数据结构和算法…

react-native实现 TextInput 键盘显示搜索按钮并触发回调

<TextInput returnKeyType"search"returnKeyLabel"搜索"onSubmitEditing{e > {toSearch(keyword);}} /><SearchBarref{serachBarEl}placeholder"请输入"onChangeText{handleChangeSearch}value{search}onSubmitEditing{handleSearch…

react16之前diff算法的理解和总结

此篇文章所讨论的是 React 16 以前的 Diff 算法。而 React 16 启用了全新的架构 Fiber&#xff0c;相应的 Diff 算法也有所改变&#xff0c;本片不详细讨论Fiber。 fiber架构是为了支持react进行可中断渲染&#xff0c;降低卡顿&#xff0c;提升流畅度。 react16之前的版本&…

131.【MySQL_基础篇】

MySQL_基础篇 (一)、MySQL 介绍1.MySQL三大阶段(1).基础篇(2).进阶篇(3).运维篇 2.MySQL 概念3.数据模型(1).关系型数据库(RDBMS) 4.数据库三大范式 (二)、SQL 编程语言1.SQL通用语法2.SQL 四大分类3.DDL (数据定义语言)(1).数据库操作 ->(增删改查)(2).表操作 -> (增删改…

IDEA2023隐藏.idea和.iml文件

IDEA2023隐藏.idea和.iml文件 1. 打开file -> setting,快捷键CtrlAlts2. Editor -> File types3. 点击右侧Ignore files and folders一栏4. 添加需要忽略的文件5. 最重要一步 IDEA新建项目会自动生成一个.idea文件夹和.iml文件&#xff0c;开发中不需要对这两个文件修改&…

LeetCode 92. Reverse Linked List II【链表,头插法】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

react使用hook封装一个tab组件

目录 react使用hook封装一个tab组件Tabbar.jsx使用组件效果 react使用hook封装一个tab组件 Tabbar.jsx import PropsTypes from "prop-types"; import React, { useEffect, useState } from react; export default function Tabbar(props) {const { tabData , cur…

Kotlin File writeText appendText appendBytes readBytes readText

Kotlin File writeText appendText appendBytes readBytes readText import java.io.Filefun main(args: Array<String>) {val filePath "./myfile.txt"val file File(filePath)file.writeText("hello,") //如果原有文件有内容&#xff0c;将完全覆…

【Maven教程】(四)坐标与依赖:坐标概念,依赖配置、范围、传递性和最佳实践 ~

Maven 坐标与依赖 1️⃣ 什么是Maven 坐标2️⃣ 坐标详解3️⃣ 依赖的配置4️⃣ 依赖范围5️⃣ 传递性依赖6️⃣ 依赖调解7️⃣ 可选依赖8️⃣ 最佳实践8.1 排除依赖8.2 归类依赖8.3 优化依赖 &#x1f33e; 总结 正如前面文章所述&#xff0c;Maven 的一大功能是管理项目依赖…

sonarqube版本升级

官方文档&#xff1a;Upgrade guide 步骤1、停止原有sonarqube服务&#xff0c;如果是docker部署的直接停掉容器并删除 步骤2、部署最新版sonarqube&#xff0c;保留原有配置 步骤3、访问sonarqube web 显示维护中&#xff0c;根据官方给出的升级方法&#xff0c;在sonarqub…

学习笔记|小数点控制原理|数码管动态显示|段码跟位码|STC32G单片机视频开发教程(冲哥)|第十集:数码管动态显示

文章目录 1.数码管动态刷新的原理2.动态刷新原理3.8位数码管同时点亮新建一个数组选择每个位需要显示的内容实战小练&#xff1a;简易10秒免单计数器将刷新动作写成函数 课后练习: 1.数码管动态刷新的原理 上述图片引用自&#xff1a;51单片机初学2-数码管动态扫描 用一排端口来…

mysql 大表如何ddl

大家好&#xff0c;我是蓝胖子&#xff0c;mysql对大表(千万级数据)的ddl语句&#xff0c;在生产上执行时一定要千万小心&#xff0c;一不小心就有可能造成业务阻塞&#xff0c;数据库io和cpu飙高的情况。今天我们就来看看如何针对大表执行ddl语句。 通过这篇文章&#xff0c;…

推荐一款程序员截图神器!

快来看一下程序员必备的一款截图工具 今天就来和大家说一下作为程序员必备截图神器&#xff0c;几乎每一个程序员都会设置开机自启&#xff0c;因为这个截图功能太太太好用了&#xff01;&#xff01;&#xff01;只要你在键盘上按下F1就可以轻松截取整个屏幕&#xff0c;然后…

OpenHarmony:如何使用HDF驱动控制LED灯

一、程序简介 该程序是基于OpenHarmony标准系统编写的基础外设类&#xff1a;RGB LED。 目前已在凌蒙派-RK3568开发板跑通。详细资料请参考官网&#xff1a;https://gitee.com/Lockzhiner-Electronics/lockzhiner-rk3568-openharmony/tree/master/samples/b02_hdf_rgb_led。 …

【【STM32--28--IO引脚的复用功能】】

STM32–28–IO引脚的复用功能 STM32的IO复用功能 何为复用? 我们先了解一下何为通用 IO端口的输入或输出是由GPIO外设控制&#xff0c;我们称之为通用 复用&#xff1a; IO端口的输入或者是输出是由其他非GPIO外设控制就像经常说的USART 由 DR寄存器进行输出 STM32的IO复用功…

docker 笔记11: Docker容器监控之CAdvisor+InfluxDB+Granfana

1.原生命令 docker stats命令的结果 是什么 2.是什么 容器监控3剑客 CAdvisor监控收集InfluxDB存储数据Granfana展示图表 3.CAdvisor 4.InfluxDB 5.Granfana 6.总结 7.compose容器编排&#xff0c;一套带走 新建目录 7.1新建3件套组合的 docker-compose.yml version: 3.1vo…

通过 Jetbrains GateWay实现Remote Development

本次环境准备 环境准备&#xff1a;win10、一台安装有树莓派系统的树莓派&#xff08;也可以是其他的服务器&#xff09; 第一步&#xff1a;通过官网下载JetBrains Gateway 官网地址&#xff1a;https://www.jetbrains.com/remote-development/gateway/ 第二步&#xff1a;安装…