最近这段时间,ChatGPT火爆全网,引发了整个社会的强烈关注。
这个来自OpenAI公司的聊天机器人,表现出了极为逆天的人工智能水平,让所有人为之震惊。
(chat,英文就是“聊天”的意思)
其实,对人工智能(以下简称“AI”)的能力,人类是有心理准备的。
数十年来,我们观看的很多影视作品,都与AI有关。在这些作品中,AI展现的能力更为强大,给我们打了预防针。
来自MOSS的凝视(《流浪地球2》剧照)
这次ChatGPT之所以带来舆论震动,更主要的原因在于——人们以为AI会慢慢发展,谁也没想到,它“呼”的一下,就来了个“三级跳”,瞬间变强。
ChatGPT的崛起,除了令人震惊之外,还带来了两种感受。一种是振奋,一种是担忧。
ChatGPT可以完成很多工作,尤其是一些此前需要真人才能完成的工作。对于企业来说,可以节约大量人力成本,提升效率,增强竞争力。
而对于更多数的普通人来说,自己的饭碗很可能被AI抢掉,从而下岗、失业。
以前,是人和人卷。
以后,除了和人卷,还要和更强大的AI卷。
(图片来自《The New Yorker》)
我们每个人都应该认真思考一下,该如何应对AI的崛起:
自己所处的行业,在AI的影响下,会发生哪些变化?自己的工作,是否可能被AI取代?如果会被取代,自己该如何应对?除了取代关系,自己是否可以尝试驾驭它,为己所用?
今天这篇文章,小编就站在通信人的角度,试着分析一下,ChatGPT以及它背后的AI浪潮,到底会给我们带来怎样的影响。
█ 对通信行业的影响
从宏观来看,ChatGPT的爆火,对通信行业是一个重大利好。
在以往的文章里,我反复说过,AI是算力发展到必然阶段的产物。AI之所以现在一日千里,背后都是算力在进行支撑。
ChatGPT的出色表现,肯定会给全球算力建设又注入一针强心剂。像数据中心这样的算力基础设施,还有芯片、服务器、云计算这样的算力技术,一定会继续获得大量投资,迅猛向前发展。
作为算力的最佳搭档,联接力(通信技术)肯定也会跟着获得资源,一起发展。
有算力(数据计算、存储)的地方,一定有通信(数据搬运)。
数据是AI三大要素之一。以4G、5G等为代表的移动技术,还有全光传输网络,负责将终端与终端、终端与云、云与云连接起来。这将为AI提供海量的数据。
这几年,算力与网络融合,搞出了云网融合、算力网络。算力网络为算力服务,算力为AI服务。AI一旦起飞,通信就算吃不上肉,也至少能喝上汤。
通信技术助力AI发展,反过来,AI也帮助通信技术进一步提升。
AI在通信领域的落地,很早就已经开始了。
2018年的时候,小编就在MWC(世界移动大会)看到过相关的研究成果展示。这几年,类似的展示越来越多,成熟度也越来越高,很多都已经开始进行试点。
目前看,AI赋能通信网络,主要集中在以下几个方面:
1、无线网络优化
网优是移动通信网络建设的一项重要工作。传统的网优,都是网优工程师结合个人经验,加上一些工具辅助,人工完成。引入AI之后,网络信号质量的数据处理会变得更加高效,也能够更快地输出优化方案。
也有人设想,如果让无人车和无人机到处跑,采集信号质量数据,那么路测这项工作也可以无人化,真正实现网络自优化。
2、算法增强
现在通信研发越来越难,算法挖潜(例如高阶调制算法)越来越复杂。引入AI,可以帮助提升算法的效率,或者帮助找到更好的算法,实现通信网络的性能提升。
3、网络调度和路由
这个主要是传输网在捣鼓。此前的IPv4,路由和包转发效率低。现在,行业在搞IPv6和SRv6,包括SDN,就是为了提升网络的“交通效率”,对路由进行集中管理。
集中之后谁来管理?当然就是AI管理。如果出现链路拥塞和中断,AI第一时间可以进行切换,实现零感知。
4、网络故障自愈
这个也是AI的热门方向。通过对海量网络故障数据的学习,AI可以基于故障现象,快速判断故障原因,要么提交人类工程师处理,要么自己直接干预。直接干预的话,也可以实现用户对故障的灵感知。
5、网络节能减排
省电就是省钱。现在基站那么多,数据中心那么多,负载需求总是在不断变化的。结合AI,对通信设备进行自动调节功率,甚至进行关断,可以大幅降低设备能耗,减少碳排放,以及电费投入。
相比ChatGPT,上述这些AI应用的实际进展还没有那么先进。但是,谁也不知道,也许哪一天,某个厂商就会突然扔一个超牛的AI机器人出来,彻底颠覆某项工作,甚至整个行业?
AI的优势,是海量数据分析、找到潜在规律、提出应对建议,或者直接做出决策。通信行业的数字化程度本来就高,到处都是数据,所以有大量的工作适合采用AI。
█ 对通信人的影响
接下来,我们再具体看一下,ChatGPT和AI,会给我们每个通信人造成什么影响。
小编仔细想了一下,发现通信行业有两种人最不容易被AI取代。第一种是售前市场人员,第二种是一线劳动者。
售前市场人员,属于和客户面对面打交道的人。和政府或企业客户做生意,你派个机器人去,显然是不合适的(不会喝酒、应酬、大保健)。尤其在中国,都是关系性市场,没有良好的客户关系,生意肯定没办法做。所以,这类握有关键客户资源的人,AI很难取代。
但是,对售前提供支撑的工作,是可以交给AI的。
例如,ChatGPT可以帮助写方案、标书,一些形式上的文本工作。再例如,市场人员进行市场分析和营销策略制定的时候,可以借助AI,分析市场情况(销量、喜好、满意度等),提供决策建议。
一线劳动者,也就是现场干体力活的人。
工程项目现场的环境比较复杂。我觉得,中短期内想要实现完全的无人机械化,比较困难。站点的勘察、安装、搬运,还是需要人来做。说实话,也不是说这类工作有多高级,主要是因为人的成本反而低。。。
一些不涉及复杂操作的一线工作,也还是会逐渐被AI替代。例如前面说的网络优化,再例如设备开通调测。
最早的时候,设备开通都是工程师一个一个配置数据。后来,有了脚本,可以批处理导入数据。现在,简单的数据,都是上一级网管分发,自动配置。未来,系统分发的数据,都是AI规划和配置好的。
网络维护,如前面所说,大概率会大量采用AI。以后,AI负责监控和维护网络,如果出现问题,AI下达命令,然后人类工程师去干活(例如换硬盘、换光纤、换单板)。
网络性能指标方面,人类工程师和AI最大的区别,就是AI根据数据给出结果,而人类可以根据结果给出数据。这还是蛮NB的,不可替代。^_^
研发方面的工作,受AI的影响也比较大。大家都看到了,目前的ChatGPT,就已经可以胜任初级码农的工作。以后,它写代码的能力,一定会越来越强。
这倒逼了研发人员必须不断提升自己的能力,要有更强的创新能力,更具创造性。那些滥竽充数的研发,就比较危险了。
其实搞过研发工作的童鞋都知道,写一个程序,并不是每行代码都自己从零开始写。简单的模块,都是直接调用的。关键的部分,才是自己写。
现在都说低代码开发,甚至零代码开发。以后,说不定人类只需要给出自己的思路,代码部分完全由AI完成,也有很大可能性。
总而言之,AI的崛起,对坐办公室的岗位有更大的威胁。那么和人打交道的岗位,以及需要实际复杂操作的岗位,相对来说更加安全。
现在很多公司都有一群“养老”的人,每天坐在电脑前,收数据,画表格,写PPT,写报告。这些人最容易被AI干掉,还望好自为之。
好了,以上就是小编的一点个人见解。
AI的崛起,是大势所趋。ChatGPT的出现,给我们每个人敲响了警钟。AI并不遥远。它在不断学习,不断进步。作为人类的我们,没有理由不学习、不进步。
时代抛弃你的时候,连招呼都不打一声。难道不是吗?
以上信息由英利检测(Teslab)整理发布,如有出入请及时指正,欢迎一起讨论,我们一直在关注这方面的发展,如有引用也请注明出处。我们在无线通信产品认证领域服务既深入又广泛,将是业内最为优秀第三方认证服务商之一!
|国家高新技术企业(连续)|专业的人做专业的事|本本分分|:┆PTCRB┆VERIZON┆AT&T┆GCF┆TMO┆3C┆SRRC┆CTA┆JATE┆TELEC┆BQB┆