PY32F003F18之RS485通讯

PY32F003F18将USART2连接到RS485芯片,和其它RS485设备实现串口接收后再转发的功能。

一、测试电路

二、测试程序

#include "USART2.h"
#include "stdio.h"  //getchar(),putchar(),scanf(),printf(),puts(),gets(),sprintf()
#include "string.h" //使能strcpy(),strlen(),memset()
#include "delay.h"
#include "MyUSART.h"//PA0 ------> USART2_TX
//PA1 ------> USART2_RXuint8_t USART2_TX_Buffer[USART2_TX_Buffer_Size]; //USART2发送缓冲区数组;
uint8_t USART2_TX_Buffer_Send_Index=0;          //USART2_TX_Buffer[]的发送索引值;
uint8_t USART2_TX_Buffer_Load_Index=0;          //USART2_TX_Buffer[]的装载索引值
uint8_t USART2_TX_Completed_Flag;
uint8_t USART2_TX_Overtime_Conter;//USART2发送超时计数器uint8_t USART2_RX_Buffer[USART2_RX_Buffer_Size]; //USART2接收缓冲区数组
uint8_t USART2_RX_Buffer_Load_Index;          //USART2_RX_Buffer[]的装载索引值
uint8_t USART2_RX_Time_Count;                 //USART2接收时间计数器
uint8_t USART2_RX_Completed_Flag;void USART2_GPIO_Config(void);
void USART2_NVIC_Cpnfig(void);
void USART2_Mode_Config(uint32_t baudrate);
void USART2_Init(uint32_t baudrate);
void USART2_Load_Send_Data(void);void RS485_Enable_Output_Init(void)
{GPIO_InitTypeDef  GPIO_InitStructure;__HAL_RCC_GPIOB_CLK_ENABLE();//使能GPIOB时钟//初始化GPIOB5GPIO_InitStructure.Pin = GPIO_PIN_5;                  //选择第5脚GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;        //设置引脚工作模式为推挽输出方式GPIO_InitStructure.Pull = GPIO_PULLUP;                //配置引脚使能上拉GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //配置GPIO速度为极高HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);//根据GPIO_InitStructure结构变量指定的参数初始化GPIOB的外设寄存器RS485_ENABLE_PIN_Output_High();
}//函数功能:USART2的IO口配置,PA0是为USART2_TX,PA1是USART2_RX
void USART2_GPIO_Config(void) 
{GPIO_InitTypeDef  GPIO_InitStructureure;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟__HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟GPIO_InitStructureure.Pin = GPIO_PIN_0;     //选择第0脚,PA0是为USART2_TXGPIO_InitStructureure.Mode = GPIO_MODE_AF_PP;            //复用功能推挽模式GPIO_InitStructureure.Pull = GPIO_PULLUP;                //引脚上拉被激活GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //引脚速度为最高速GPIO_InitStructureure.Alternate = GPIO_AF9_USART2;       //将引脚复用为USART2HAL_GPIO_Init(GPIOA, &GPIO_InitStructureure);//根据GPIO_InitStructureure结构变量指定的参数初始化GPIOA的外设寄存器//将PA0初始化为USART2_TXGPIO_InitStructureure.Pin = GPIO_PIN_1;     //选择第1脚,PA1是USART2_RXGPIO_InitStructureure.Mode = GPIO_MODE_AF_PP;            //复用功能推挽模式GPIO_InitStructureure.Pull = GPIO_PULLUP;                //引脚上拉被激活GPIO_InitStructureure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; //引脚速度为最高速GPIO_InitStructureure.Alternate = GPIO_AF9_USART2;       //将引脚复用为USART2HAL_GPIO_Init(GPIOA, &GPIO_InitStructureure);//根据GPIO_InitStructureure结构变量指定的参数初始化GPIOA的外设寄存器//将PA1初始化为USART2_RX
}//函数功能:设置串口2中断优先级为0x01
void USART2_NVIC_Cpnfig(void)
{HAL_NVIC_SetPriority(USART2_IRQn, 0x01, 0);//设置串口2中断优先级为0x01,0无意义.USART2_IRQn表示中断源为串口2
}//函数功能:波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口
void USART2_Mode_Config(uint32_t baudrate)
{UART_HandleTypeDef UART_HandleStructureure;HAL_StatusTypeDef retData;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟UART_HandleStructureure.Instance          = USART2;              //接口为USART2UART_HandleStructureure.Init.BaudRate     = baudrate;            //波特率为115200bpsUART_HandleStructureure.Init.WordLength   = UART_WORDLENGTH_8B;  //串口字长度为8UART_HandleStructureure.Init.StopBits     = UART_STOPBITS_1;     //串口停止位为1位UART_HandleStructureure.Init.Parity       = UART_PARITY_NONE;    //串口无需奇偶校验UART_HandleStructureure.Init.HwFlowCtl    = UART_HWCONTROL_NONE; //串口无硬件流程控制UART_HandleStructureure.Init.Mode         = UART_MODE_TX_RX;     //串口工作模式为发送和接收模式retData=HAL_UART_Init(&UART_HandleStructureure);//根据UART_HandleStructureure型结构初始化USART2if ( retData!= HAL_OK)//串口初始化失败{}
//USART_ITConfig(USART2,UART_IT_PE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_PE);
//	//串口接收数据时,使能奇偶校验错误时产生中断,Enable the UART Parity Error Interrup//	USART_ITConfig(USART2,UART_IT_ERR,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_ERR);
//	//串口接收数据时,使能帧错误、噪音错误和溢出错误时产生中断
//	//Enable the UART Error Interrupt: (Frame error, noise error, overrun error)USART_ITConfig(USART2,UART_IT_RXNE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_RXNE);开启串口接收中断//串口接收数据时,使能"接收数据寄存器不为空"则产生中断(位RXNE=1)//Enable the UART Data Register not empty Interrupt/在串口中断服务函数中发送数据配置开始//
//	USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXE=1)//Enable the UART Transmit data register empty InterruptUSART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disable the UART Transmit Complete Interrupt//  USART_ITConfig(USART2,UART_IT_TC,ENABLE);
//  __HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TC);//串口发送数据时,使能"串口发送完成"产生中断(位TC=1)//Enable the UART Transmit Complete InterruptUSART_ITConfig(USART2,UART_IT_TC,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure,UART_IT_TC);//串口发送数据时,不使能"串口发送完成"产生中断(位TC=1)
/在串口中断服务函数中发送数据配置结束//HAL_NVIC_EnableIRQ(USART2_IRQn);//使能串口2中断//USART2_IRQn表示中断源为串口2
}//函数功能:
//波特率为115200,数字为8位,停止位为1位,无奇偶校验
//自动波特率配置模式
//允许发送和接收数据,允许接收和发送中断,并使能串口
void My_USART2_Mode_Config(uint32_t baudrate)
{UART_InitTypeDef UART_InitStructureure;UART_AdvFeatureInitTypeDef AdvancedInit_Structureure;__HAL_RCC_USART2_CLK_ENABLE();//使能USART2外设时钟UART_InitStructureure.BaudRate     = baudrate;            //波特率为115200bpsUART_InitStructureure.WordLength   = UART_WORDLENGTH_8B;  //串口字长度为8UART_InitStructureure.StopBits     = UART_STOPBITS_1;     //串口停止位为1位UART_InitStructureure.Parity       = UART_PARITY_NONE;    //串口无需奇偶校验UART_InitStructureure.HwFlowCtl    = UART_HWCONTROL_NONE; //串口无硬件流程控制UART_InitStructureure.Mode         = UART_MODE_TX_RX;     //串口工作模式为发送和接收模式AdvancedInit_Structureure.AdvFeatureInit=UART_ADVFEATURE_NO_INIT;//不使用自动波特率
//	AdvancedInit_Structureure.AdvFeatureInit=UART_ADVFEATURE_AUTOBAUDRATE_INIT;//使用自动波特率配置
//	AdvancedInit_Structureure.AutoBaudRateEnable=UART_ADVFEATURE_AUTOBAUDRATE_ENABLE;//自动波特率使能
//	AdvancedInit_Structureure.AutoBaudRateMode=UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT;//自动波特率模式USARTx_SetConfig(USART2,&UART_InitStructureure,&AdvancedInit_Structureure);//根据UART_HandleStructureure型结构初始化USART2//USART_ITConfig(USART2,UART_IT_PE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_PE);
//	//串口接收数据时,使能奇偶校验错误时产生中断,Enable the UART Parity Error Interrup//	USART_ITConfig(USART2,UART_IT_ERR,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_ERR);
//	//串口接收数据时,使能帧错误、噪音错误和溢出错误时产生中断
//	//Enable the UART Error Interrupt: (Frame error, noise error, overrun error)USART_ITConfig(USART2,UART_IT_RXNE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_RXNE);开启串口接收中断//串口接收数据时,使能"接收数据寄存器不为空"则产生中断(位RXNE=1)//Enable the UART Data Register not empty Interrupt/在串口中断服务函数中发送数据配置开始//
//	USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	__HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXE=1)//Enable the UART Transmit data register empty InterruptUSART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure, UART_IT_TXE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disable the UART Transmit Complete Interrupt//  USART_ITConfig(USART2,UART_IT_TC,ENABLE);
//  __HAL_UART_ENABLE_IT(&UART_HandleStructureure, UART_IT_TC);//串口发送数据时,使能"串口发送完成"产生中断(位TC=1)//Enable the UART Transmit Complete InterruptUSART_ITConfig(USART2,UART_IT_TC,DISABLE);
//	__HAL_UART_DISABLE_IT(&UART_HandleStructureure,UART_IT_TC);//串口发送数据时,不使能"串口发送完成"产生中断(位TC=1)
/在串口中断服务函数中发送数据配置结束//HAL_NVIC_EnableIRQ(USART2_IRQn);//使能串口2中断//USART2_IRQn表示中断源为串口2
}//函数功能:
//PA0是为USART2_TX,PA1是USART2_RX
//中断优先级为0x01
//波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口
void USART2_Init(uint32_t baudrate)
{RS485_Enable_Output_Init();USART2_GPIO_Config();//USART2的IO口配置,PA0是为USART2_TX,PA1是USART2_RXUSART2_NVIC_Cpnfig();//设置串口2中断优先级为0x01
//	USART2_Mode_Config(baudrate);//波特率为115200,数字为8位,停止位为1位,无奇偶校验,允许发送和接收数据,允许接收和发送中断,并使能串口My_USART2_Mode_Config(baudrate);
//波特率为115200,数字为8位,停止位为1位,无奇偶校验
//自动波特率配置模式
//允许发送和接收数据,允许接收和发送中断,并使能串口USART2_RX_Buffer_Load_Index = 0;USART2_RX_Time_Count = 0;USART2_TX_Completed_Flag = 0; //允许再次发送数据memset(USART2_RX_Buffer,0,USART2_RX_Buffer_Size);
}//重定义fputc函数
//函数功能:发送ch的值给USART2串口
int fputc(int ch, FILE *f)
{USART_SendData(USART2, (unsigned char) ch);while( USART_GetFlagStatus(USART2,USART_SR_TC)!= SET); //等待发送完成标志位被置1	return ch;
}//函数功能:串口2发送一个字节
void USART2_SendByte(  unsigned char ch )
{USART_SendData(USART2, ch);while( USART_GetFlagStatus(USART2,USART_SR_TC)!= SET); //等待发送完成标志位被置1	
}//函数功能:启动串口2发送
void USART2_Load_Send_Data(void)
{uint16_t k;RS485_ENABLE_PIN_Output_High();//RS485准备发送HAL_Delay(5);k=strlen((char*)USART2_TX_Buffer);USART2_TX_Buffer_Load_Index = k;启动发送/USART2_TX_Completed_Flag=1;USART2_TX_Overtime_Conter=0;USART2_TX_Buffer_Send_Index = 0;  //设置USART2_TX_Buffer[]的发送索引值为0USART_ITConfig(USART2,UART_IT_TXE,ENABLE);
//	USART_TXEIE_Config(USART2,ENABLE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"设置为1//串口发送数据时,使能"串口发送数据寄存器为空"产生中断(位TXEIE=1)//Enable the UART Transmit Complete Interrupt
}//函数功能:串口2中断服务程序
void USART2_IRQHandler(void)
{uint8_t RX_temp;if( _HAL_UART_GET_FLAG(USART2,USART_SR_RXNE) )
//	if(	SET==USART_GetITStatus(USART2,USART_SR_RXNE)){//在串口状态寄存器中,发现RXNE=1,且串口控制寄存器1允许接收数据RX_temp = (uint8_t)( USART_ReceiveData(USART2) );//读串口数据USART_ClearITPendingBit(USART2,USART_SR_RXNE);if(RX_temp=='1' && USART2_RX_Time_Count==0)	USART2_RX_Time_Count = 1;//如果接收到帧头为变频器地址为0x1,则启动USART2接收时间计数器if(USART2_RX_Time_Count > 0){USART2_RX_Time_Count = 1;//设置USART2接收时间计数器为1;USART2_RX_Buffer[USART2_RX_Buffer_Load_Index] = RX_temp;//保存接收到的新数据USART2_RX_Buffer_Load_Index++;if(USART2_RX_Buffer_Load_Index>=USART2_RX_Buffer_Size) USART2_RX_Buffer_Load_Index=1;//防止USART2_RX_Buffer[]溢出}//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将ORE位(Overrun错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将NE位(噪声错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将FE位(帧错误标志)清零;//软件先读"串口状态寄存器(USART_SR)",然后再读"串口数据寄存器USART_DR",就可以将PE位(奇偶校验值错误)清零;//软件读"串口数据寄存器USART_DR",就可以将RXNE位清零}if(	SET==USART_GetITStatus(USART2,USART_SR_TXE)){USART_ClearITPendingBit(USART2,UART_IT_TXE);if(USART2_TX_Buffer_Send_Index < USART2_TX_Buffer_Load_Index)	//未发送完全部数据{USART_SendData(USART2,USART2_TX_Buffer[USART2_TX_Buffer_Send_Index]);//将USART2_TX_Buffer[USART2_TX_Buffer_Send_Index]的值写入串口发送"串口发送数据寄存器"USART2_TX_Buffer_Send_Index++;}else //RS485串口发送完成{USART_ITConfig(USART2,UART_IT_TXE,DISABLE);
//			USART_TXEIE_Config(USART2,DISABLE);//串口发送数据时,不使能"串口发送数据寄存器为空"产生中断(位TXE=0)//Disabless Transmit Data Register empty interruptUSART_ITConfig(USART2,UART_IT_TC,ENABLE);//将"串口控制寄存器1(USART_CR1)中的TCIE位"设置为1//串口发送数据时,使能"串口发送完成"产生中断(位TCIE=1)//Enables Transmission complete interrupt	}}if(	SET==USART_GetITStatus(USART2,USART_SR_TC)){USART_ClearITPendingBit(USART2,UART_IT_TC);USART_ITConfig(USART2,UART_IT_TC,DISABLE);//将"串口控制寄存器1(USART_CR1)中的TCIE位"设置为0//串口发送数据时,不使能"串口发送完成"产生中断(位TCIE=0)//Disable the UART Transmit Complete InterruptUSART2_TX_Completed_Flag=2;      //USART2发送完成USART2_TX_Overtime_Conter=0;USART2_TX_Buffer_Send_Index = 0;//清除USART2_TX_Buffer[]的发送索引值USART2_TX_Buffer_Load_Index = 0;//清除USART2_TX_Buffer[]的装载索引值
//		USART2_RX_Time_Count=0;
//		USART2_RX_Buffer_Load_Index =	0;//清接收计数索引RS485_ENABLE_PIN_Output_Low();//更改485为接收	}
}
#include "py32f0xx_hal.h"
#include "SystemClock.h"
#include "USART2.h"
#include "stdio.h"  //getchar(),putchar(),scanf(),printf(),puts(),gets(),sprintf()
#include "string.h" //使能strcpy(),strlen(),memset()
#include "delay.h"const char CPU_Reset_REG[]="\r\nCPU reset!\r\n";
int main(void)
{uint8_t i;delay_init();HAL_Delay(1000);USART2_Init(115200);strcpy((char*)USART2_TX_Buffer,CPU_Reset_REG);USART2_Load_Send_Data();while (1){delay_ms(10);for(i=0;i<USART2_RX_Buffer_Size;i++){if(USART2_RX_Buffer[0]=='1'){delay_ms(10);USART2_RX_Buffer_Load_Index = 0;USART2_RX_Time_Count = 0;USART2_TX_Completed_Flag = 0; //允许再次发送数据memset(USART2_TX_Buffer,0,USART2_TX_Buffer_Size);strcpy((char*)USART2_TX_Buffer,(char*)USART2_RX_Buffer);memset(USART2_RX_Buffer,0,USART2_RX_Buffer_Size);USART2_Load_Send_Data();delay_ms(10);}}}
}
#include "MyUSART.h"void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState);
//void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT);
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT);
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit);//函数功能:
//当NewState=ENABLE,USART_IT=UART_IT_RXNE,使能串口接收寄存器为非空时产生中断,即使能RXNEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_PE,使能串口奇偶校验错误产生中断,即使能PEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_ERR,使能帧错误、噪音错误和溢出错误时产生中断,即使能EIE=1
//当NewState=ENABLE,USART_IT=UART_IT_TXE时,使能串口发送寄存器为空产生中断,即使能TXEIE=1
//当NewState=ENABLE,USART_IT=UART_IT_TC时,使能发送完成产生中断,即使能TCIE=1
void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState)
{if(NewState==DISABLE) _UART_DISABLE_IT(USARTx,USART_IT);else _HAL_UART_ENABLE_IT(USARTx,USART_IT);
}/*
//函数功能:使能串口接收中断
//当NewState=ENABLE,使能串口接收中断
//当NewState=DISABLE,不使能串口接收中断
void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_RXNEIE);//将"串口控制寄存器1(USART_CR1)中的RXNEIE位"置0,不使能RXNE接收产生中断elseSET_BIT(USARTx->CR1,USART_CR1_RXNEIE);//将"串口控制寄存器1(USART_CR1)中的RXNEIE位"置1,使能RXNE接收产生中断
}//函数功能:使能串口奇偶校验错误中断
//当NewState=ENABLE,使能PE奇偶校验错误产生中断
//当NewState=DISABLE,不使能PE奇偶校验错误产生中断
void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_PEIE);//将"串口控制寄存器1(USART_CR1)中的PEIE位"置0,不使能PE奇偶校验错误产生中断elseSET_BIT(USARTx->CR1,USART_CR1_PEIE);//将"串口控制寄存器1(USART_CR1)中的PEIE位"置1,使能PE奇偶校验错误产生中断
}//函数功能:使能串口发送中断
//当NewState=ENABLE,使能TXE发送产生中断
//当NewState=DISABLE,不使能TXE发送产生中断
void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR1,USART_CR1_TXEIE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"置0,不使能TXE发送产生中断elseSET_BIT(USARTx->CR1,USART_CR1_TXEIE);//将"串口控制寄存器1(USART_CR1)中的TXEIE位"置1,使能TXE发送产生中断
}//函数功能:使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断
//当NewState=ENABLE,使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断能TXE发送产生中断
//当NewState=DISABLE,不使能串口"帧错误FE、overrun错误ORE和噪声NF“产生中断能TXE发送产生中断
void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState)
{if(NewState==DISABLE)CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);//清除"帧错误FE、overrun错误ORE和噪声NF中断使能位"elseSET_BIT(USARTx->CR3, USART_CR3_EIE);//将"串口控制寄存器1(USART_CR3)中的EIE位"置1,使能"帧错误FE、overrun错误ORE和噪声NF“产生中断
}
*///函数功能:读串口状态标志位
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG)
{if( USART_FLAG & READ_REG(USARTx->SR) ) return SET;else  return RESET;
}//函数功能:读串口中断标志位
ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT)
{if( USART_IT & READ_REG(USARTx->SR) ) return SET;else  return RESET;
}//函数功能:
//USART_IT=UART_IT_RXNE,清除"串口接收寄存器为非空时产生的中断标志位"
//USART_IT=UART_IT_PE,清除"串口奇偶校验错误产生的中断标志位"
//USART_IT=UART_IT_ERR,清除"帧错误、噪音错误和溢出错误时产生的中断标志位"
//USART_IT=UART_IT_TXE时,清除"串口发送寄存器为空产生的中断标志位"
//USART_IT=UART_IT_TC时,清除"发送完成产生的中断标志位"
void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT)
{CLEAR_BIT(USARTx->SR,USART_IT);//将"状态寄存器USART_SR"的USART_IT
}//函数功能:串口发送数据
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data)
{USARTx->DR = (Data & (uint16_t)0x01FF);
}//函数功能:串口接收数据
uint16_t USART_ReceiveData(USART_TypeDef* USARTx)
{return (uint16_t)(USARTx->DR & (uint16_t)0x01FF);
}//函数功能:USARTx_CK引脚配置
void USART_CK_Pin_Config(USART_TypeDef* USARTx, FunctionalState NewState)
{if(NewState==DISABLE){CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);//清除"串口控制寄存器2(USART_CR2)中的CLKEN位",不使能USARTx_CK引脚}else{SET_BIT(USARTx->CR2, USART_CR2_CLKEN);//设置"串口控制寄存器2(USART_CR2)中的CLKEN位",使能USARTx_CK引脚}
}//函数功能:USARTx半双工通讯配置
//NewState=DISABLE,配置串口为"非半双工模式"
//NewState=ENABLE,配置串口为"半双工模式"
void USART_Half_Duplex_Config(USART_TypeDef* USARTx, FunctionalState NewState)
{if(NewState==DISABLE){CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);//清除"串口控制寄存器3(USART_CR3)中的HDSEL位",配置串口为"非半双工模式"}else{SET_BIT(USARTx->CR3, USART_CR3_HDSEL);//设置"串口控制寄存器3(USART_CR3)中的HDSEL位",配置串口为"半双工模式"}
}//函数工能:使用自动波特率配置
//AdvancedInit->AdvFeatureInit=UART_ADVFEATURE_AUTOBAUDRATE_INIT;//使用自动波特率配置
//AdvancedInit->AutoBaudRateEnable=UART_ADVFEATURE_AUTOBAUDRATE_ENABLE;//自动波特率使能
//AdvancedInit->AutoBaudRateMode=UART_ADVFEATURE_AUTOBAUDRATE_ONSTARTBIT;//自动波特率模式
void USART_Automatic_Baudrate_Detection_Config(USART_TypeDef* USARTx, UART_AdvFeatureInitTypeDef *AdvancedInit)
{/* Check whether the set of advanced features to configure is properly set */assert_param(IS_UART_ADVFEATURE_INIT(AdvancedInit->AdvFeatureInit));/* if required, configure auto Baud rate detection scheme */if (HAL_IS_BIT_SET(AdvancedInit->AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)){assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(USARTx));assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(AdvancedInit->AutoBaudRateEnable));MODIFY_REG(USARTx->CR3, USART_CR3_ABREN, AdvancedInit->AutoBaudRateEnable);/* set auto Baudrate detection parameters if detection is enabled */if (AdvancedInit->AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE){assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(AdvancedInit->AutoBaudRateMode));MODIFY_REG(USARTx->CR3, USART_CR3_ABRMODE, AdvancedInit->AutoBaudRateMode);}}
}//函数功能:将UART_InitTypeDef型结构变量写入"串口控制寄存器"
void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit)
{uint32_t tmpreg;uint32_t pclk;/* Check the parameters */assert_param(IS_UART_BAUDRATE(Init->BaudRate));assert_param(IS_UART_STOPBITS(Init->StopBits));assert_param(IS_UART_PARITY(Init->Parity));assert_param(IS_UART_MODE(Init->Mode));_HAL_UART_DISABLE(USARTx);//将"串口控制寄存器1(USART_CR1)中的UE位"置0,不使能串口/*-------------------------- USART CR2 Configuration -----------------------*//* Configure the UART Stop Bits: Set STOP[13:12] bitsaccording to Init->StopBits value */MODIFY_REG(USARTx->CR2, USART_CR2_STOP, Init->StopBits);//使用Init->StopBits的值修改"串口控制寄存器2(USART_CR2)中的STOP位",用来设置停止位的位数/*-------------------------- USART CR1 Configuration -----------------------*//* Configure the UART Word Length, Parity and mode:Set the M bits according to Init->WordLength valueSet PCE and PS bits according to Init->Parity valueSet TE and RE bits according to Init->Mode valueSet OVER8 bit according to Init->OverSampling value */#if defined(USART_CR3_OVER8)tmpreg = (uint32_t)Init->WordLength | Init->Parity | Init->Mode;//将"数据长度,奇偶校验,串口发送和接收模式合并为字,准备修改"串口控制寄存器1(USART_CR1)MODIFY_REG(USARTx->CR1,(uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE),tmpreg);tmpreg = (uint32_t) Init->OverSampling;//准备修改"串口控制寄存器3(USART_CR3)中的OVER8位"MODIFY_REG(USARTx->CR3,(uint32_t)(USART_CR3_OVER8),tmpreg);
#elsetmpreg = (uint32_t)Init->WordLength | Init->Parity | Init->Mode;MODIFY_REG(USARTx->CR1,(uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE),tmpreg);
#endif /* USART_CR3_OVER8 *//*-------------------------- USART CR3 Configuration -----------------------*//* Configure the UART HFC: Set CTSE and RTSE bits according to Init->HwFlowCtl value */MODIFY_REG(USARTx->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), Init->HwFlowCtl);//修改"串口控制寄存器3中的RTS和CTS位"#if defined(USART_CR3_OVER8)/* Check the Over Sampling */if(Init->OverSampling == UART_OVERSAMPLING_8){/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();//读取PCLK1时钟频率USARTx->BRR = UART_BRR_SAMPLING8(pclk, Init->BaudRate);//设置串口波特率}else{/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();//读取PCLK1时钟频率USARTx->BRR = UART_BRR_SAMPLING16(pclk, Init->BaudRate);//设置串口波特率}
#else/*-------------------------- USART BRR Configuration ---------------------*/pclk = HAL_RCC_GetPCLK1Freq();USARTx->BRR = UART_BRR_SAMPLING16(pclk, Init->BaudRate);#endif /* USART_CR3_OVER8 */if( AdvancedInit->AdvFeatureInit != UART_ADVFEATURE_NO_INIT ){//使用自动波特率配置USART_Automatic_Baudrate_Detection_Config(USARTx,AdvancedInit);}USART_CK_Pin_Config(USARTx,DISABLE);//不使用USARTx_CK引脚配置USART_Half_Duplex_Config(USARTx,DISABLE);//配置串口为"非半双工模式"_HAL_UART_ENABLE(USARTx);//使能串口
}
#ifndef __MyUSART_H
#define __MyUSART_H#include "py32f0xx_hal.h"#define _HAL_UART_ENABLE(__INSTANCE__)               ((__INSTANCE__)->CR1 |=  USART_CR1_UE)
//将"串口控制寄存器1(USART_CR1)中的UE位"置1,使能串口#define _HAL_UART_DISABLE(__INSTANCE__)              ((__INSTANCE__)->CR1 &=  ~USART_CR1_UE)
//将"串口控制寄存器1(USART_CR1)中的UE位"置0,不使能串口#define _HAL_UART_ENABLE_IT(__INSTANCE__, __INTERRUPT__)   ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__INSTANCE__)->CR1 |= ((__INTERRUPT__) & UART_IT_MASK)): \(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__INSTANCE__)->CR2 |= ((__INTERRUPT__) & UART_IT_MASK)): \((__INSTANCE__)->CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
//使能串口中断#define _UART_DISABLE_IT(__INSTANCE__, __INTERRUPT__)  ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__INSTANCE__)->CR1 &= ~((__INTERRUPT__) & UART_IT_MASK)): \(((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__INSTANCE__)->CR2 &= ~((__INTERRUPT__) & UART_IT_MASK)): \((__INSTANCE__)->CR3 &= ~ ((__INTERRUPT__) & UART_IT_MASK)))
//不使能串口中断#define _HAL_UART_GET_FLAG(__INSTANCE__, __FLAG__) (((__INSTANCE__)->SR & (__FLAG__)) == (__FLAG__))extern void USART_ITConfig(USART_TypeDef * USARTx, uint32_t USART_IT, FunctionalState NewState);
//extern void USART_RXNEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//extern void USART_PEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//extern void USART_TXEIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
//void USART_EIE_Config(USART_TypeDef * USARTx, FunctionalState NewState);
extern FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
extern ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint32_t USART_IT);
extern void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint32_t USART_IT);
extern void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
extern uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
extern void USARTx_SetConfig(USART_TypeDef* USARTx,UART_InitTypeDef *Init,UART_AdvFeatureInitTypeDef *AdvancedInit);
#endif /* __MyUSART_H */
#include "delay.h"static uint8_t  fac_us=0; //us延时倍乘数void delay_init(void);
void delay_us(uint32_t nus);
void delay_ms(uint32_t nms);//函数功能:配置"SysTick定时器"每1ms中断一次,优先级为最低
void delay_init(void)
{fac_us=SystemCoreClock/1000000;//不论是否使用OS,fac_us都需要使用uwTickFreq=HAL_TICK_FREQ_1KHZ;//准备配置"SysTick定时器"每1ms中断一次//配置"SysTick定时器"时钟源为系统时钟,并使能中断//HAL_TICK_FREQ_10HZ= 100,"SysTick计数器"的中断周期为100ms//HAL_TICK_FREQ_100HZ= 10,"SysTick计数器"的中断周期为10ms//HAL_TICK_FREQ_1KHZ = 1,"SysTick计数器"的中断周期为1msHAL_InitTick(PRIORITY_LOWEST);//配置"SysTick定时器"每1ms中断一次,优先级为最低
//	HAL_Init();//配置"SysTick定时器"每1ms中断一次,优先级为最低HAL_SetTickFreq(uwTickFreq);//设置"SysTick滴答定时器"的中断周期为uwTickFreq个毫秒
}//函数功能:延时nus
//nus:要延时的us数.	
//nus:0~204522252(最大值即2^32/fac_us)	    								   
void delay_us(uint32_t nus)
{		uint32_t ticks;uint32_t told,tnow,tcnt=0;uint32_t reload=SysTick->LOAD;//读取"SysTick定时器"自动重装载值ticks=nus*fac_us; 						//需要的节拍数 told=SysTick->VAL;        	  //读取"系统滴答定时器的计数值"while(1){tnow=SysTick->VAL;//读取"系统滴答定时器的计数值"	if(tnow!=told){	    if(tnow<told)tcnt+=told-tnow;	//这里注意一下SYSTICK是一个递减的计数器就可以了.else tcnt+=reload-tnow+told;	    told=tnow;if(tcnt>=ticks)break;			//时间超过/等于要延迟的时间,则退出.}		}										    
}//函数功能:延时nms
//nms:要延时的ms数
//nms:0~65535
void delay_ms(uint32_t nms)
{	delay_us((uint32_t)(nms*1000));//普通方式延时
}//HAL库接口函数
//HAL_Delay(x)延时x毫秒,x<0xFFFFFFFF,至少需要延时一个周期
//HAL_SuspendTick();不使能"SysTick滴答定时器"中断
//HAL_ResumeTick();使能"SysTick滴答定时器"中断
//HAL_GetTickFreq();读取"SysTick滴答定时器"的中断频率
//HAL_SetTickFreq(Freq);设置"SysTick滴答定时器"的中断频率为Freq
//HAL_GetTickPrio();读取"SysTick滴答定时器"的中断优先级
//HAL_GetTick();读取"SysTick滴答定时器"的中断次数计数器uwTick
//HAL_IncTick();供SysTick_Handler()调用
//uwTickFreq=HAL_TICK_FREQ_1KHZ;//准备配置"SysTick定时器"每1ms中断一次
//HAL_InitTick(PRIORITY_LOWEST);//配置"SysTick定时器"每1ms中断一次,优先级为最低
//HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
//设置系统滴答定时器的时钟源
//CLKSource=SYSTICK_CLKSOURCE_HCLK_DIV8时,系统滴答定时器的时钟源为系统时钟的8分频
//CLKSource=SYSTICK_CLKSOURCE_HCLK,系统滴答定时器的时钟源为系统时钟

三、测试结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131295.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++之智能指针shared_ptr死锁问题(二百)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Nacos安装指南以及集群搭建

结合SpringCloud从基础到活用&#xff08;超详细&#xff09;查看 一、Windows安装 开发阶段采用单机安装即可。1.1.下载安装包 在Nacos的GitHub页面&#xff0c;提供有下载链接&#xff0c;可以下载编译好的Nacos服务端或者源代码&#xff1a;GitHub主页&#xff1a;https:…

汇报一下日常健身和锻炼方面的进展

跑步app最终从“咕咚”和“悦跑圈”二选一&#xff0c;锁定到悦跑圈上了。 七月太热&#xff0c;配速下降&#xff0c;但还能玩出花样 八月中旬气温稍降&#xff0c;配速提升&#xff0c;拟合抛物线 截至发博日,实际连续跑步接近600天了 截至发博日&#xff0c;完成2023跑量96…

警惕!1本SCI解除“On Hold”,Chemosphere等11本期刊仍被标记!

期刊动态&#xff1a;警惕期刊“On Hold”状态&#xff01; 2023年8月&#xff0c;小编从科睿唯安官网整理出12本期刊处于“On Hold”状态&#xff01; 参考往期推文&#xff1a; 警惕&#xff01;10本“On Hold”期刊已被踢&#xff0c;仍有12本期刊被标记&#xff01; 期…

Xcelium(xrun)的基础使用

Xcelium的基础使用 https://www.cnblogs.com/Alfred-HOO/articles/17416139.html 一&#xff0c;基础问答 1&#xff0c;Xcelium的由来&#xff1f; Xcelium&#xff08;xrun&#xff09;是cadence最新的仿真工具&#xff0c;Incisive(irun)的升级版本。 2&#xff0c;如何用x…

java spring cloud 企业工程管理系统源码+二次开发+定制化服务

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…

一位参加2023 Google开发者大会 菜鸟的自卑

&#x1f604;作者简介&#xff1a; 小曾同学.com,一个致力于测试开发的博主⛽️&#xff0c;主要职责&#xff1a;测试开发、CI/CD 如果文章知识点有错误的地方&#xff0c;还请大家指正&#xff0c;让我们一起学习&#xff0c;一起进步。&#x1f60a; 座右铭&#xff1a;不想…

【Blender】Blender入门学习

目录 0 参考视频教程0.1 Blender理论知识0.2 Blender上手实践0.3 FBX模型导入Unity 1 Blender的窗口介绍1.1 主界面1.2 模型编辑窗口 2 Blender的基本操作2.1 3D视图的平移2.2 3D视图的旋转2.3 3D视图的缩放2.4 修改快捷键2.5 使物体围绕选择的物体旋转2.6 四视图的查看2.7 局部…

接口测试(详细总结)

序章 ​ 说起接口测试&#xff0c;网上有很多例子&#xff0c;看了不不知道他们说的什么&#xff0c;觉得接口测试&#xff0c;好高大上。认为学会了接口测试就能屌丝逆袭&#xff0c;走上人生巅峰&#xff0c;迎娶白富美。因此学了点开发知识后&#xff0c;发现接口测试其实都…

Unity中程序集dll

一&#xff1a;前言 一个程序集由一个或多个文件组成&#xff0c;通常为扩展名.exe和.dll的文件称为程序集&#xff0c;.exe是静态的程序集&#xff0c;可以在.net下直接运行加载&#xff0c;因为exe中有一个main函数(入口函数&#xff09;&#xff0c;.dll是动态链接库&#…

机器学习:基于梯度下降算法的逻辑回归实现和原理解析

这里写目录标题 什么是逻辑回归&#xff1f;Sigmoid函数逻辑回归损失函数梯度下降 逻辑回归定义逻辑函数线性组合模型训练决策边界 了解逻辑回归&#xff1a;从原理到实现什么是逻辑回归&#xff1f;逻辑回归的原理逻辑回归的实现逻辑回归的应用代码示例算法可视化 当涉及到二元…

模板学堂|数据可视化仪表板大屏设计流程梳理

DataEase开源数据可视化分析平台于2022年6月正式发布模板市场&#xff08;https&#xff1a;//dataease.io/templates/&#xff09;。模板市场旨在为DataEase用户提供专业、美观、拿来即用的仪表板模板&#xff0c;方便用户根据自身的业务需求和使用场景选择对应的仪表板模板&a…

Keil MDK-ARM 软件的部分常用快捷键如下

F7&#xff1a;编译。F8: 下载。F9&#xff1a;添加/取消断点。Ctrl F5&#xff1a;调试。Tab&#xff1a;将选中的内容整体右移。Shift Tab&#xff1a;将选中的内容整体左移。Home&#xff1a;将光标移至行首。End&#xff1a;将光标移至行末。Ctrl >&#xff1a;光标…

第1章_freeRTOS入门与工程实践之课程介绍

本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id724601559592 配套资料获取&#xff1a;https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103 freeRTOS系列教程之freeRTOS入…

mysql5.8 免安装版(压缩包)win10 安装

目录 1、下载MySQL5.82、如何安装、配置my.ini配置注意 3初始化mysql3.1. 初始化mysql3.2. 安装mysql服务3.3. 启动mysql3.4. 登录mysql3.5. 修改root密码3.6. 配置远程连接 Mysql5.8安装踩坑记录&#xff0c;推荐使用Docker安装&#xff0c;我是电脑虚拟化可能会蓝屏没用这个功…

htaccess绕过上传实验

实验目的 利用上传htaccess文件解析漏洞绕过验证进行上传PHP脚本木马 实验工具 火狐&#xff1a;Mozilla Firefox&#xff0c;中文俗称“火狐”&#xff08;正式缩写为Fx或fx&#xff0c;非正式缩写为FF&#xff09;&#xff0c;是一个自由及开放源代码网页浏览器&#xff0…

Python爬虫基础(一):urllib库的使用详解

文章目录 系列文章索引一、urllib库的使用1、基本介绍2、response的类型和关键方法3、下载文件4、GET请求实例&#xff08;1&#xff09;设置请求头&#xff08;百度&#xff09;&#xff08;2&#xff09;使用quote方法对get参数编码&#xff08;百度&#xff09;&#xff08;…

【Redis】2、Redis持久化和性能管理

Redis 高可用 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务&#xff08;99.9%、99.99%、99.999%等等&#xff09;。 但是在Redis语境中&#xff0c;高可用的含义似乎要宽泛一些&#xff0c;除了保证提供…

每日一题 1462. 课程表 IV

难度&#xff1a;中等 思路&#xff1a; 显然它是一个课程图的结构&#xff0c;因为没有环也可以看成是森林结构对于一组 queries 最直接的方法就是以 v 作为根节点进行深搜或者广搜&#xff0c;能找到 u 就是 True&#xff0c;不能则是 False本体有多个 queries&#xff0c;…

【精华】AI Agent:大模型改变世界的“钥匙”

文章目录 1.Auto-GPT2.BabyAGI3.AgentGPT4.GodMode5.AI Town6.ChatDev 当前大模型的本质是大语言模型&#xff08;Large Language Model, LLM&#xff09;。相较于传统的自然语言处理模型&#xff0c;LLM通过无监督训练&#xff0c;从大量文本数据中学习自然语言的模式和结构&a…