作业:
仿照Vector实现MyVector,最主要实现二倍扩容
#include <iostream>using namespace std;template <typename T>
class MyVector
{
private:T *data;size_t size;size_t V_capacity;
public://无参构造MyVector():data(nullptr),size(0),V_capacity(0) {//cout<<"MyVector::无参构造"<<endl;}//有参构造MyVector(int count,T val){size = count;V_capacity = count;data = new T[count];for(int i = 0;i < count;i++){data[i] = val;}//cout<<"MyVector::有参构造"<<endl;}//析构函数~MyVector(){delete [] data;data = nullptr;//cout<<"MyVector::析构函数"<<endl;}// 定义迭代器类class MyIterator {private:T* ptr;public://有参构造MyIterator(T* p):ptr(p){//cout<<"MyIterator::有参构造"<<endl;}// *重载T& operator*()const {return *ptr;}// 前置++重载MyIterator& operator++() {++ptr;return *this;}// 后置++重载MyIterator operator++(int) {MyIterator temp = *this;++ptr;return temp;}// 前置--重载MyIterator& operator--() {--ptr;return *this;}// 后置--重载MyIterator operator--(int) {MyIterator temp = *this;--ptr;return temp;}// ==重载bool operator==(const MyIterator& other) const {return ptr == other.ptr;}// !=重载bool operator!=(const MyIterator& other) const {return ptr != other.ptr;}};//begin 函数 返回第一个元素的迭代器MyIterator begin() {return MyIterator(data);}//end 函数 返回最末元素的迭代器(注:实指向最末元素的下一个位置)MyIterator end() {return MyIterator(data + size);}//assign 函数 对MyVector中的元素赋值void assign(size_t num, const T &val ){for(int i = 0;i < num;i++){data[i] = val;}cout<<"assign 函数"<<endl;}//at 函数 返回指定位置的元素T at(int pos){if(pos < 0 || pos >= size){throw int(1); //抛出异常}return data[pos];}//back 函数 返回最末一个元素T back(){return data[size-1];}//capacity 函数 返回vector所能容纳的元素数量size_t capacity(){return V_capacity;}//clear 函数 清空所有元素void clear(){size = 0;}//empty 函数 判空bool empty(){return size == 0;}//front 函数 返回第一个元素T front(){return data[0];}//pop_back 函数 移除最后一个元素void pop_back(){if(empty()){throw int(2); //抛出异常}size--;}//push_back 函数 在MyVector最后添加一个元素void push_back(const T& value) {if (size == V_capacity) {// 扩容逻辑size_t newCapacity = (V_capacity == 0)?1:V_capacity * 2;T* newData = new T[newCapacity];for(int i = 0;i < static_cast<int>(size);i++){newData[i] = data[i];}delete[] data;data = newData;V_capacity = newCapacity;}data[size++] = value;}//size 函数 返回Vector元素数量的大小size_t get_size(){return size;}
};int main()
{MyVector<int> V1(5,2);cout<<"V1的第一个元素 = "<<V1.front()<<endl;cout<<"V1的最末一个元素 = "<<V1.back()<<endl;cout<<"V1的capacity = "<<V1.capacity()<<endl;cout<<endl;cout<<"********************************************************"<<endl;cout<<endl;V1.push_back(8);V1.push_back(5);V1.push_back(7);V1.push_back(6);cout<<"V1的第一个元素 = "<<V1.front()<<endl;cout<<"V1的最末一个元素 = "<<V1.back()<<endl;cout<<"V1的capacity = "<<V1.capacity()<<endl;cout<<"V1的size = "<<V1.get_size()<<endl;cout<<endl;cout<<"********************************************************"<<endl;cout<<endl;int *p = NULL;MyVector<int>::MyIterator q(p);cout<<"当前容器内的元素:";for(q = V1.begin();q != V1.end();q++){cout<< *q <<"\t";}cout<<endl;cout<<endl;cout<<"********************************************************"<<endl;cout<<endl;V1.pop_back();cout<<"V1的最末一个元素 = "<<V1.back()<<endl;V1.pop_back();cout<<"V1的最末一个元素 = "<<V1.back()<<endl;V1.pop_back();cout<<"V1的最末一个元素 = "<<V1.back()<<endl;cout<<"V1的size = "<<V1.get_size()<<endl;cout<<endl;cout<<"********************************************************"<<endl;cout<<endl;V1.clear();cout<<"V1的size = "<<V1.get_size()<<endl;return 0;
}
效果图:
一、异常处理
【1】异常概念
C++中的异常指的是在程序运行过程中出现的问题,没有任何语法错误,存在逻辑问题
【2】异常处理
- throw ----->抛出异常,抛出异常一定在异常发生之前
- try ····catch ----->捕获异常并进行异常处理
总结:
- 抛出异常一定在发生异常之前
- try···catch中可以存放所有可能发生异常的代码,只要有一条语句抛出异常,try后面的语句都不会执行
- 异常可以只有数据类型,也可以及有数据类型也有值
- catch可以通过数据类型,获取到异常的结果并使用if进行判断,如果每种异常抛出的都是不同的数据类型,catch中就无需定义变量
- 如果同种数据类型的异常有多个值,要依次根据值来判断异常的情况
- throw抛出异常往往被调函数的位置,try···catch往往在主调函数内处理异常
#include <iostream>
using namespace std;void fun(int a,int b)
{//throw 数据类型(值)//数据类型:指定抛出异常的类型,便于接收//值:针对不同的异常情况,给出不同的值,处理异常时使用//在执行语句之前先对可能发生异常的位置进行判断if(b==0){throw double(1);}if(b==3){//函数内抛出了两个double类型的异常,分别返回不同的值throw int(2);}if(b==2){throw double(2);}cout << a/b << endl;
}//处理异常一般在主函数内
//try···catch处理异常
int main()
{//tyr尝试接收异常,try内可以放多条语句,//有一条语句抛出异常后,后面都不会执行try{//try去接收所有可能的异常fun(4,2);fun(2,1);fun(3,3);}//由于函数中,只有一个double类型的异常,所以可以直接对异常的类型进行判断catch (double a) //如果double后面加变量名,变量会获取到异常的结果{if(a==1)cout << "除数为0" << endl;if(a==2)cout << "除数为2是一个测试" << endl;}catch (int){cout << "除数为3是一个测试" << endl;}fun(3,1);cout << "1" << endl;
}
二、using的第三种用法
#include <iostream>//using namespace std;
using std::string;
class A
{
public:string name;
};
class B:public A
{
protected:using A::name;
};
namespace P {string n1;
}//给命名空间重命名
//namespace 新的名字 = 旧的名字
//新名字和旧名字都能用
namespace O = P;
int main()
{using std::cout;using std::endl;typedef int a; //后面可以直接使用a定义int类型的变量//C++11支持的using INT = int; //后面可以直接使用INT定义int类型的变量INT num1 = 100;cout << num1 << endl;P::n1 = "helo";O::n1 = "hi";cout << O::n1 << endl;return 0;
}
三、类型转换
【1】隐式强转
以及和C中一致的显式强转
#include <iostream>
using namespace std;int main()
{float num1 = 2.3;int num2 = num1; //发生了隐式的强制类型转换//C中的显式强制类型转换double num3 = (double)num2;cout << num2 << endl;return 0;
}
【2】C++中支持的强制类型转换
- const_cast,取消常属性,取消常量指针的属性
- static_cast,和平时使用时发生强转用法一致,几乎支持所有类型间的强转
- dynamic_cast,发生在父子类指针间的转换,如果转换失败,会返回空地址
- reinterpret_cast,给类型重新赋值,不常用,不会检查数据类型匹配问题
#include <iostream>
using namespace std;class A
{string name;
public:virtual void show(){cout << name << endl;}
};class B:public A
{mutable int age;
public:void fun()const{age = 90;}void show(){cout << &age << endl;}
};int main()
{//定义了一个常量num1const int num1 = 90;int *p; //定义了一个指针变量p = const_cast<int *>(&num1); //使用const_cast让指针指向const修饰的变量的地址*p = 12;cout << *p << endl;//mutable关键也可以取消常属性//static_cast适用于几乎所有的强制类型转换char var = 'a';int num2;//int num2 = (int)var;num2 = static_cast<int>(var);cout << num2 << endl;A* p1 = new B; //父类指针指向子类的空间A* p2 = new A; //父类指针指向父类的空间//B* p3 = static_cast<B*>(p2); p2指向父类的空间,但是static_cast可以强转成功B* p3 = dynamic_cast<B*>(p2);//使用了dynamic_cast,可以实现多态情况下,可以实现父子类指针的转换//如果父类指针没有指向子类的空间,返回值为0cout << "父类指针指向父类的空间" << p2 << endl;cout << "子类的指针" << p3 << endl;B* p4 = reinterpret_cast<B*>(p2);cout << "父类指针指向父类的空间" << p2 << endl;cout << "子类的指针" << p4 << endl;char *str = "hello";int a = reinterpret_cast<int>(str);cout << a << endl;//p3->show();return 0;
}
四、lambda表达式
应用场合:
想要使用匿名的、临时的函数,并且还需要获取外部变量时
- lambda(λ)表达式,是C++11支持的
- lambda表达式,用于实现轻量级的匿名函数
- 定义:[]()mutable->返回值{函数体}; --->结果一般使用auto接收
[捕获列表](参数列表)mutable->返回值{函数体};
1、[=]:对所有变量按值捕获[&]:对所有变量按引用捕获[a,b]:对a和b按值捕获[&a,&b]:对a和b按引用捕获//[=,&a]:对除a外的变量值捕获,a按引用捕获//[&,a]:对除a外的变量按引用捕获,a按值捕获2、参数列表:和普通函数的参数一致,就是传参数到函数中
3、mutable可以写也可以不写:
如果不写mutable,在lambda表达式中不能修改按值捕获的变量的值,按引用捕获的不受影响
4、lambda实现的匿名函数的返回值
5、函数体就是匿名函数的实现
#include <iostream>
using namespace std;int main()
{int a = 90,b = 7,c,d,e;cout << "a=" << a << endl;cout << "b=" << b << endl;cout << "--------------------" << endl;//使用lambda表达式,实现主函数内变量值的交换//[=]:对所有变量按值捕获//[&]:对所有变量按引用捕获//[a,b]:对a和b按值捕获//[&a,&b]:对a和b按引用捕获//[=,&a]:对除a外的变量值捕获,a按引用捕获//[&,a]:对除a外的变量按引用捕获,a按值捕获//lambda表示式,使用auto类型获取auto fun = [&,a]()mutable->void{ int temp;temp = a;a = b;b = temp;};fun();//使用lambda实现求最大值auto max = [=]()->int{ if(a>b)return a;elsereturn b; };cout << max() << endl;return 0;
}
五、STL标准模板库
C++ Standard Template Library
C++ 标准模板库(STL)
C++ STL (Standard Template Library标准模板库) 是通用类模板和算法的集合,它提供给程序员一些标准的数据结构的实现如 queues(队列), lists(链表), 和 stacks(栈)等.
C++ STL 提供给程序员以下三类数据结构的实现:
- 顺序结构
- C++ Vectors
- C++ Lists
- C++ Double-Ended Queues
- 容器适配器
- C++ Stacks
- C++ Queues
- C++ Priority Queues
- 联合容器
- C++ Bitsets
- C++ Maps
- C++ Multimaps
- C++ Sets
- C++ Multisets
【1】Vector
Vector的底层实现,就是线性表
Vectors 包含着一系列连续存储的元素,其行为和数组类似。访问Vector中的任意元素或从末尾添加元素都可以在常量级时间复杂度内完成,而查找特定值的元素所处的位置或是在Vector中插入元素则是线性时间复杂度。
需要手动导入头文件#include
1、求vetcor容器的大小:
size_type capacity();
capacity() 函数 返回当前vector在重新进行内存分配以前所能容纳的元素数量.
2、添加元素
void push_back( const TYPE &val );
push_back()添加值为val的元素到当前vector末尾
3、求容器的真实大小
size_type size();
size() 函数返回当前vector所容纳元素的数目
4、给容器中的元素赋值
void assign( size_type num, const TYPE &val );
赋num个值为val的元素到vector中.这个函数将会清除掉为vector赋值以前的内容.
5、访问容器中的元素
TYPE at( size_type loc );
at() 函数 返回当前Vector指定位置loc的元素的引用. at() 函数 比 [] 运算符更加安全, 因为它不会让你去访问到Vector内越界的元素.
6、清空容器中的元素
void clear();
clear()函数删除当前vector中的所有元素.
7、判空函数
bool empty();
如果当前vector没有容纳任何元素,则empty()函数返回true,否则返回false.例如,以下代码清空一个vector,并按照逆序显示所有的元素:
8、返回起始位置的引用
TYPE front();
front()函数返回当前vector起始元素的引用
9、返回最后一个位置的引用
TYPE back();
back() 函数返回当前vector最末一个元素的引用.
10、返回起始元素的迭代器
iterator begin();
begin()函数返回一个指向当前vector起始元素的迭代器.
11、返回末尾下一个位置的迭代器
iterator end();
end() 函数返回一个指向当前vector末尾元素的下一位置的迭代器.
注意,如果你要访问末尾元素,需要先将此迭代器自减1.
12、指定位置的插入,由于没有提供返回指定位置迭代器,需要在第一个元素的迭代器上运算
iterator insert( iterator loc, const TYPE &val );
在指定位置loc前插入值为val的元素,返回指向这个元素的迭代器,
13、移除最后一个元素
void pop_back();
pop_back()函数删除当前vector最末的一个元素,
14、构造函数
vector( input_iterator start, input_iterator end );
迭代器(start)和迭代器(end) - 构造一个初始值为[start,end)区间元素的Vector(注:半开区间).
【2】List
list的底层实现是一个双向链表
主要功能
1、头插
void push_front( const TYPE &val );
push_front()函数将val连接到链表的头部。
2、最大容量
size_type max_size();
max_size()函数返回链表能够储存的元素数目
3、元素个数
size_type size();
size()函数返回list中元素的数量。
4、排序
void sort();
给链表中的元素排序,默认是升序
5、判空
bool empty();
empty()函数返回真(true)如果链表为空,否则返回假。