批量、在线学习, 参数、非参数学习

批量学习(Batch Learning)和在线学习(Online Learning)

批量学习

在这里插入图片描述

批量学习的概念非常容易理解,我们之前介绍的许多机器学习算法,如果没有特殊说明,都可以采用批量学习的方式。批量学习的过程通常包括以下步骤:

  1. 收集一定量的样本数据。
  2. 将这些样本数据送给机器学习算法进行训练,以创建模型。
  3. 训练好的模型可以用于预测或分类新的数据。
  4. 模型通常不会在生产环境中发生变化,对新的数据进行分类时,仍然使用之前训练的模型, 这些新送来的样例不会再作为训练集来优化我们的模型。

批量学习的优点是非常简单只需要学习一个机器学习算法,不需要考虑在生产环境中逐步优化算法以适应新数据的变化。然而,它也有一个明显的问题,即如何适应环境的变化?

在实际应用中,数据和环境可能会随时间变化,导致模型不再适用于新数据。例如,在垃圾邮件处理中,随着时间的推移,新类型的垃圾邮件不断涌现,导致过去的模型不再有效。为了解决这个问题,可以定期执行重新的批量学习,将新样本数据与原始数据合并,并重新训练模型,以适应环境的整体变化。这种方法可以用于适应变化相对较慢的情况。

然而,它也有缺点每次重新进行批量学习的过程可能需要大量的计算资源, 且运算量巨大尤其是在需要频繁更新模型以适应快速变化的环境时,这种方法可能不切实际。因此,在某些情况下,需要探索更灵活的学习方法,以适应数据和环境的实时变化,而不是依赖于定期的批量学习。

在线学习

在某些情况下,即使我们的计算性能足够强大,使用批量学习也不是明智的选择。这是因为在某些环境中,变化发生得非常迅速,而批量学习无法及时适应这种快速变化的情况。一个典型的例子是股市,其中股价每时每刻都在不断波动。

如果我们试图使用批量学习来进行股市分析,每次都重新收集大量的历史数据进行训练,那么我们的模型可能永远跟不上市场的变化。在这种情况下,使用在线学习的方法更为合适。在线学习的基本思想是不断地接收新数据,及时更新模型,以适应环境的变化。

在线学习与批量学习的不同之处在于,每次输入新样本后,我们不仅获得了预测结果,而且还将新样本的信息用于改进模型,然后继续接收下一个样本。这种迭代的过程持续不断,相当于在线的过程, 因此被称为在线学习。

在这里插入图片描述

不仅仅是简单的应用这个模型去得到我们想要的结果。与此同时呢,我们还在不断的训练这个算法,让这个算法进行学习,所以叫做在线的学习。那么在线的学习它的优点当然非常显然,
它可以及时的反映新的环境的变化。
在线学习的优点包括:

  • 及时适应变化:能够快速适应环境的变化,特别是在数据变化速度较快的情况下,如股市分析。

然而,在线学习也存在一些问题,包括:

  • 新数据可能引入错误:由于模型在每个时刻都在学习和更新,新的不准确或有噪音的数据可能会导致模型性能下降。

  • 对数据质量要求高:由于模型不断迭代学习,需要确保输入的数据质量良好,以避免错误的学习。

综上所述,在线学习适用于需要快速适应环境变化的情况,但也需要小心处理新数据可能引入的问题。在不同的应用场景中,需要权衡批量学习和在线学习之间的利弊,选择适合的学习方法。

在线学习的一个典型应用场景是在生产环境中,机器学习算法可能会接收到异常或不正常的数据,这些数据可能会迅速进入模型训练过程,导致模型性能下降或产生错误的结果。竞争对手也有可能利用这些异常数据来误用我们的系统。解决这个问题需要强化对数据的监控。

为了应对这种情况,通常会在部署在线学习时加强数据监控。这意味着我们需要及时检测到异常数据,并采取相应的措施来处理它们,以防止它们对模型产生不良影响。之前在非监督学习中提到过异常检测是一个应用场景,而在线学习可以在实时监测到异常数据时进行处理。

此外,有时候由于数据量巨大,一次性离线学习可能不可行。在线学习也可以用于离线学习,这意味着我们将离线学习的过程分成多个小批次来进行,最终得到我们所需的训练模型。这种方法在处理大规模数据集时可以提供更高的效率。

综上所述,在线学习适用于需要及时适应环境变化、处理异常数据或大规模数据集的情况。通过不断迭代学习和及时监控数据,可以使在线学习在实际应用中发挥重要作用。

参数学习和非参数学习

  • 参数学习 Parametric Learning
  • 非参数学习 Noparametric Learning
参数学习

在这里插入图片描述

参数学习是机器学习中的一种方法,它的基本思想是通过学习一组参数来描述输入数据和输出之间的关系。以线性回归为例,假设我们有一个二维的特征空间,其中横坐标表示房屋的面积(X),纵坐标表示房屋的价格(Y)。在参数学习中,我们可以假设房屋的价格与面积之间存在线性关系,即:

Y = a ⋅ X + b Y = a \cdot X + b Y=aX+b
在这个公式中,a和b是待学习的参数。参数学习的核心任务是找到合适的参数a和b,以使这个线性模型能够最好地描述训练数据中的房屋价格和面积之间的关系。这个过程是机器学习的训练过程,而参数a和b就是机器学习中的参数。

一旦我们学到了这些参数,训练数据集就不再需要,我们可以使用这个线性模型来对新的房屋进行价格预测。这是参数学习的一大特点:一旦参数学习完成,模型就可以用于预测新数据,而不再依赖于训练数据集。

总结来说,参数学习是一种基于学习一组参数来描述输入和输出之间关系的机器学习方法。在上述例子中,参数学习被应用于线性回归模型,但它是许多其他机器学习算法的基础。

非参数学习

非参数学习就是不对模型进行统计上过多的假设,没有过多的假设。通常在预测的过程中,喂给学习算法的那些数据集也要参与预测的过程中。实际上,很多非参数学习方法中仍然存在参数,只是不对整个问题进行参数建模,但在学习过程中仍然需要考虑参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140614.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】布隆过滤器简单操纵模拟以及常见题目

🌏博客主页: 主页 🔖系列专栏: C ❤️感谢大家点赞👍收藏⭐评论✍️ 😍期待与大家一起进步! 文章目录 前言一、求下标仿函数的建议二、布隆过滤器代码面试题1.近似算法:2.精确算…

CompletableFuture-FutureTask

2. CompletableFuture 语雀 2.1 Future接口理论知识复习 Future接口(FutureTask实现类)定义了操作异步任务执行一些方法,如获取异步任务的执行结果、取消异步任务的执行、判断任务是否被取消、判断任务执行是否完毕等。 举例:…

Cortex-M3/M4之SVC和PendSV异常

一、SVC异常 SVC(系统服务调用,亦简称系统调用)用于产生系统函数的调用请求。例如,操作系统不让用户程序直接访问硬件,而是通过提供一些系统服务函数,用户程序使用 SVC 发出对系统服务函数的呼叫请求,以这种方法调用它…

“源启2.0”:从自上而下的解构,到自下而上的重构

从垂直打穿、到应用重构,中电金信赋能行业数字化转型之路既“向下走”、也“向上看”。“向上”先理解和吃透客户的企业战略,进而自上而下地将企业战略拆解为业务架构,“向下”再将业务架构拆解为应用架构和数据架构,并进一步对齐…

【Acwing1027】方格取数(动态规划)题解

题目描述 思路分析 错误思路: 贪心法,先走一次求出最大值,把走过的路上面的数值清零,然后用同样的方法再走一遍求最大值,然后让这两个最大值相加就是最后的结果。 很多人在看到这个题目的时候会有上面的思路&#x…

Jmeter接口测试

前言: 本文主要针对http接口进行测试,使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的,它在实现对各种接口的调用方面已经做的比较成熟,因此,本次直接使用Jmeter工具来完成对Http接口的测试。 1.介绍什么是…

停车场系统源码

源码下载地址(小程序开源地址):停车场系统小程序,新能源电动车充电系统,智慧社区物业人脸门禁小程序: 【涵盖内容】:城市智慧停车系统,汽车新能源充电,两轮电动车充电,物…

Linux下ThinkPHP5实现定时器任务 - 结合crontab

实例一&#xff1a; 1.在/application/command创建要配置的PHP类文件&#xff0c;需要继承Command类&#xff0c;并重写configure和execute两个方法&#xff0c;例如: <?php namespace app\command; use think\console\Command; use think\console\Input; use think\cons…

“降本”是关键,FCU1104打造低成本工商业储能EMS

在不久前举行的EESA中国国际储能展上&#xff0c;“工商业储能”成为了热度最高的话题之一&#xff0c;几乎每家展出工商业储能系统的展商都收获了大量观众的驻足围观&#xff0c;热度非凡。究竟是怎样的原因让工商业储能如此瞩目呢&#xff1f; 通过与多家储能厂家沟通并查阅…

【音视频】ffplay源码解析-PacketQueue队列

包队列架构位置 对应结构体源码 MyAVPacketList typedef struct MyAVPacketList {AVPacket pkt; //解封装后的数据struct MyAVPacketList *next; //下一个节点int serial; //播放序列 } MyAVPacketList;PacketQueue typedef struct PacketQueue {MyAVPacketList …

论文精读(2)—基于稀疏奖励强化学习的机械臂运动规划算法设计与实现(内含实现机器人控制的方法)

目录 1.作者提出的问题及解决方向 2.延深-用如何用强化学习对机器人进行控制 2.1思路 2.2DQN和DDPG在机器人控制中的应用 3.解决方案 3.1思路 3.2实验 3.3创新点 4.展望 1.作者提出的问题及解决方向 目的&#xff1a;使机械臂在非结构化环境下实现端到端的自主学习控制…

MySQL学习笔记6

MySQL数据库如何存放数据&#xff1f; 注明&#xff1a;我们平常说的MySQL&#xff0c;其实主要指的是MySQL数据库管理软件。 一个MySQL DBMS可以 同时存放多个数据库&#xff0c;理论上一个项目就对应一个数据库。 如博客项目blog数据库&#xff0c;商城项目shop数据库&#…

(Vue2)智慧商城项目

新增两个目录api、utils api接口模块&#xff1a;发送ajax请求的接口模块 utils工具模块&#xff1a;自己封装的一些工具方法模块 第三方组件库vant-ui PC端&#xff1a;element-ui&#xff08;element-plus&#xff09; ant-design-vue 移动端&#xff1a;vant-ui Mint UI…

【计算机网络 - 自顶向下方法】计算机网络和因特网

目录 1. What is the Internet? 1.1 因特网的具体构成 1.2 因特网的功能 2. Network core 2.1 基本介绍 2.2 分组交换 2.2.1 序列化时延 2.2.2 排队延迟和丢包 2.2.3 分组交换的优缺点 2.3 电路交换 2.3.1 基本概念 2.3.2 电路交换网络中的复用 2.3.3 电路交换文件…

中秋国庆内卷之我爱学习C++

文章目录 前言Ⅰ. 内联函数0x00 内联函数和宏的比较0x01 内联函数的概念0x02 内联函数的特性 Ⅱ. auto&#xff08;C 11)0x00 auto的概念0x01 auto的用途 Ⅲ. 范围for循环(C11)0x00 基本用法0x01 范围for循环(C11)的使用条件 Ⅳ. 指针空值nullptr(C11)0x00 概念 前言 亲爱的夏…

Lnmp架构之mysql数据库实战2

4、mysql组复制集群 一主多从的请求通常是读的请求高于写 &#xff0c;但是如果写的请求很高&#xff0c;要求每个节点都可以进行读写&#xff0c;这时分布式必须通过&#xff08;多组模式&#xff09;集群的方式进行横向扩容。 组复制对节点的数据一致性要求非常高&#xff…

人工智能驱动的自然语言处理:解锁文本数据的价值

文章目录 什么是自然语言处理&#xff1f;NLP的应用领域1. 情感分析2. 机器翻译3. 智能助手4. 医疗保健5. 舆情分析 使用Python进行NLP避免NLP中的陷阱结论 &#x1f389;欢迎来到AIGC人工智能专栏~人工智能驱动的自然语言处理&#xff1a;解锁文本数据的价值 ☆* o(≧▽≦)o *…

1791_树莓派bash入门杂志_Essentials_Bash_v1

全部学习汇总&#xff1a; GreyZhang/little_bits_of_raspberry_pi: my hacking trip about raspberry pi. (github.com) 拿到一份树莓派早期的宣传电子杂志资料&#xff0c;看了一下感觉还是有一些帮助。针对里面多少有一些共鸣的地方&#xff0c;做一个简单的整理。 1. 命令行…

【kohya】训练自己的LoRA模型

文章目录 序言准备环境准备图片处理图片下载kohya_ss代码修改pyvenv.cfg启动界面访问地址生成字幕准备训练的文件夹配置训练参数开始训练遇到的问题&#xff1a; 序言 在把玩stable diffusion的webUI和comfyUI后&#xff0c;思考着自己也微调一个个性化风格的checkpoint、LyCO…

FPGA的DQPSK调制解调Verilog

名称&#xff1a;DQPSK调制解调 软件&#xff1a;Quartus 语言&#xff1a;Verilog 要求&#xff1a; 使用Verilog语言进行DQPSK调制和解调&#xff0c;并进行仿真 代码下载&#xff1a;DQPSK调制解调verilog&#xff0c;quartus_Verilog/VHDL资源下载 代码网&#xff1a;h…