【深度学习实验】前馈神经网络(三):自定义两层前馈神经网络(激活函数logistic、线性层算子Linear)

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入必要的工具包

1. 构建数据集

 2. 激活函数logistic

3. 线性层算子 Linear

4. 两层的前馈神经网络MLP

5. 模型训练


一、实验介绍

  • 本实验实现了一个简单的两层前馈神经网络
    • 激活函数logistic
    • 线性层算子Linear

 二、实验环境

    本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        前馈神经网络(Feedforward Neural Network)是一种常见的人工神经网络模型,也被称为多层感知器(Multilayer Perceptron,MLP)。它是一种基于前向传播的模型,主要用于解决分类和回归问题。

        前馈神经网络由多个层组成,包括输入层、隐藏层和输出层。它的名称"前馈"源于信号在网络中只能向前流动,即从输入层经过隐藏层最终到达输出层,没有反馈连接。

以下是前馈神经网络的一般工作原理:

  1. 输入层:接收原始数据或特征向量作为网络的输入,每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换,产生一个输出信号。

  2. 隐藏层:前馈神经网络可以包含一个或多个隐藏层,每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入,并将加权和经过激活函数转换后的信号传递给下一层。

  3. 输出层:最后一个隐藏层的输出被传递到输出层,输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型(分类或回归)使用适当的激活函数(如Sigmoid、Softmax等)将最终结果输出。

  4. 前向传播:信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中,每个神经元将前一层的输出乘以相应的权重,并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行,直到产生最终的输出。

  5. 损失函数和训练:前馈神经网络的训练过程通常涉及定义一个损失函数,用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross-Entropy)。通过使用反向传播算法(Backpropagation)和优化算法(如梯度下降),网络根据损失函数的梯度进行参数调整,以最小化损失函数的值。

        前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战,一些改进的网络结构和训练技术被提出,如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

977468b5ae9843c6a88005e792817cb1.png

0. 导入必要的工具包

import torch
from torch import nn

1. 构建数据集

input = torch.ones((1, 10))

         创建了一个输入张量`input`,大小为(1, 10)。

 2. 激活函数logistic

def logistic(z):return 1.0 / (1.0 + torch.exp(-z))

        logistic函数的特点是将输入值映射到一个介于0和1之间的输出值,可以看作是一种概率估计。当输入值趋近于正无穷大时,输出值趋近于1;当输入值趋近于负无穷大时,输出值趋近于0。因此,logistic函数常用于二分类问题,将输出值解释为概率值,可以用于预测样本属于某一类的概率。在神经网络中,logistic函数的引入可以引入非线性特性,使得网络能够学习更加复杂的模式和表示。

3. 线性层算子 Linear

class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs
  • Linear类是一个自定义的线性层,继承自nn.Module
    • 它具有两个参数:input_sizeoutput_size,分别表示输入和输出的大小。
  • 在初始化时,创建了两个参数:Wb,分别代表权重和偏置,都是可训练的张量,并通过nn.Parameter进行封装。
    • paramsgrads是字典类型的属性,用于存储参数和梯度;
    • inputs是一个临时变量,用于存储输入。
  • forward方法实现了前向传播的逻辑,利用输入和参数计算输出。

4. 两层的前馈神经网络MLP

class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2
  • 初始化时创建了两个线性层Linear对象:fc1fc2
  • forward方法实现了整个神经网络的前向传播过程:
    • 输入x首先经过第一层线性层fc1
    • 然后通过logistic函数进行激活,
    • 再经过第二层线性层fc2
    • 最后再经过一次logistic函数激活,
    • 并返回最终的输出。

5. 模型训练

input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)
  • 定义了三个变量input_sizehidden_sizeoutput_size,分别表示输入大小、隐藏层大小和输出大小。
  • 创建了一个MLP对象net,并将输入input传入模型进行前向计算,得到输出output。最后将输出打印出来。

6. 代码整合

# 导入必要的工具包
import torch
from torch import nn# 线性层算子,请一定注意继承自 nn. Module, 这会帮你解决许多细节上的问题
class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs# 实现一个两层的前馈神经网络
class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2# Logistic 函数
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))input = torch.ones((1, 10))
input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140778.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript(WebAPI)

目录 一.WebAPI 二.DOM 1.选中页面元素 2.事件 三.操作元素 获取修改元素内容 获取/修改表单元素属性 value type 获取/修改样式属性 1.修改内联样式 2.修改元素应用的CSS类名 四.操作节点 1.新增元素 2.删除元素 五.小结 六.案例 1.网页版本的猜数字 2.表白…

Python | 为FastAPI后端服务添加API Key认证(分别基于路径传参和header两种方式且swagger文档友好支持)

文章目录 01 前言02 路径传参方式添加API Key2.1 完整代码2.2 请求示例2.3 swagger文档测试 03 请求头Header方式传入API Key(推荐)3.1 完整代码3.2 请求示例3.3 swagger文档测试 01 前言 FastAPI,如其名所示,是一个极为高效的框…

CSS3有哪些新特性

CSS3 引入了许多新特性&#xff0c;以增强样式设计和页面布局的能力&#xff0c;提供更多的视觉效果和交互性。以下是一些 CSS3 中的新特性&#xff1a; 圆角边框&#xff08;Border Radius&#xff09;&#xff1a;圆角的边框&#xff0c;而不是传统的方形边框。 <!DOCTY…

Java面试被问了几个简单的问题,却回答的不是很好

作者&#xff1a;逍遥Sean 简介&#xff1a;一个主修Java的Web网站\游戏服务器后端开发者 主页&#xff1a;https://blog.csdn.net/Ureliable 觉得博主文章不错的话&#xff0c;可以三连支持一下~ 如有需要我的支持&#xff0c;请私信或评论留言&#xff01; 前言 前几天参加了…

解决0-1背包问题(方案二):一维dp数组(滚动数组)

往期文章&#xff1a;解决0-1背包问题&#xff08;方案一&#xff09;:二维dp数组_呵呵哒(&#xffe3;▽&#xffe3;)"的博客-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/133207350?spm1001.2014.3001.5501 >>探索一维dp数组和二维dp数组的…

深入学习 Redis Cluster - 基于 Docker、DockerCompose 搭建 Redis 集群,处理故障、扩容方案

目录 一、基于 Docker、DockerCompose 搭建 Redis 集群 1.1、前言 1.2、编写 shell 脚本 1.3、执行 shell 脚本&#xff0c;创建集群配置文件 1.4、编写 docker-compose.yml 文件 1.5、启动容器 1.6、构建集群 1.7、使用集群 1.8、如果集群中&#xff0c;有节点挂了&am…

【沐风老师】3DMAX翻转折叠动画插件FoldFx使用方法详解

3DMAX翻转折叠动画插件FoldFx使用方法详解 3DMAX翻转折叠动画插件FoldFx&#xff0c;是3dMax运动图形工具&#xff0c;用于创建多边形折叠动画。用户几乎有无限的可能性&#xff0c;因为动画的每个方面都是可控的。 【适用版本】 适用于3dMax版本&#xff1a;2010及更新版本&a…

让Pegasus天马座开发板实现超声波测距

在完成《让Pegasus天马座开发板用上OLED屏》后&#xff0c;我觉得可以把超声波测距功能也在Pegasus天马座开发板上实现。于是在箱子里找到了&#xff0c;Grove - Ultrasonic Ranger 这一超声波测传感器。 官方地址: https://wiki.seeedstudio.com/Grove-Ultrasonic_Ranger 超声…

OCR -- 文本检测

目标检测&#xff1a; 不仅要解决定位问题&#xff0c;还要解决目标分类问题&#xff0c;给定图像或者视频&#xff0c;找出目标的位置&#xff08;box&#xff09;&#xff0c;并给出目标的类别&#xff1b; 文本检测&#xff1a; 给定输入图像或者视频&#xff0c;找出文本的…

SpringBoot之响应处理

文章目录 前言一、返回值处理器ReturnValueHandler流程关于HttpMessageConverters的初始化ReturnValueHandler与MappingJackson2HttpMessageConverter关联 二、内容协商内容协商原理底层源码 三、自定义MessageConverter总结 前言 包括返回值处理器ReturnValueHandler、内容协…

【Vue.js】使用Element搭建登入注册界面axios中GET请求与POST请求跨域问题

一&#xff0c;ElementUI是什么&#xff1f; Element UI 是一个基于 Vue.js 的桌面端组件库&#xff0c;它提供了一套丰富的 UI 组件&#xff0c;用于构建用户界面。Element UI 的目标是提供简洁、易用、美观的组件&#xff0c;同时保持灵活性和可定制性 二&#xff0c;Element…

套接字socket编程的基础知识点

目录 前言&#xff08;必读&#xff09; 网络字节序 网络中的大小端问题 为什么网络字节序采用的是大端而不是小端&#xff1f; 网络字节序与主机字节序之间的转换 字符串IP和整数IP 整数IP存在的意义 字符串IP和整数IP相互转换的方式 inet_addr函数&#xff08;会自…

相机One Shot标定

1 原理说明 原理部分网上其他文章[1][2]也已经说的比较明白了&#xff0c;这里不再赘述。 2 总体流程 参考论文作者开源的Matlab代码[3]和github上的C代码[4]进行说明&#xff08;不得不说还是Matlab代码更优雅&#xff09; 论文方法总体分两部&#xff0c;第一部是在画面中找…

封装一个高级查询组件

封装一个高级查询组件 背景一&#xff0c;前端相关代码二&#xff0c;后端相关代码三&#xff0c;呈现效果总结 背景 业务有个按照自定义选择组合查询条件&#xff0c;保存下来每次查询的时候使用的需求。查了一下项目里的代码没有现成的组件可以用&#xff0c;于是封装了一个 …

Python实战实例代码-网络爬虫-数据分析-机器学习-图像处理

Python实战实例代码-网络爬虫-数据分析-机器学习-图像处理 Python实战实例代码1. 网络爬虫1.1 爬取网页数据1.2 爬取图片1.3 爬取动态数据&#xff08;使用Selenium&#xff09; 2. 数据分析2.1 数据清洗2.2 数据变换2.3 数据聚合 3. 机器学习3.1 线性回归3.2 随机森林3.3 K-Me…

【数据结构】C++实现哈希表

闭散列哈希表 哈希表的结构 在闭散列的哈希表中&#xff0c;哈希表每个位置除了存储所给数据之外&#xff0c;还应该存储该位置当前的状态&#xff0c;哈希表中每个位置的可能状态如下&#xff1a; EMPTY&#xff08;无数据的空位置&#xff09;。EXIST&#xff08;已存储数…

Linux Day18 TCP_UDP协议及相关知识

一、网络基础概念 1.1 网络 网络是由若干结点和连接这些结点的链路组成&#xff0c;网络中的结点可以是计算机&#xff0c;交换机、 路由器等设备。 1.2 互联网 把多个网络连接起来就构成了互联网。目前最大的互联网就是因特网。 网络设备有&#xff1a;交换机、路由器、…

图层混合算法(一)

常见混合结果展示 图层混合后变暗 正常模式&#xff08;normal&#xff09; 混合色*不透明度&#xff08;100%-混合色不透明度&#xff09; void layerblend_normal(Mat &base,Mat &blend,Mat &dst,float opacity) {if (base.rows ! blend.rows ||base.cols ! b…

测试C#图像文本识别模块Tesseract的基本用法

微信公众号“dotNET跨平台”的文章《c#实现图片文体提取》&#xff08;参考文献3&#xff09;介绍了C#图像文本识别模块Tesseract&#xff0c;后者是tesseract-ocr&#xff08;参考文献2&#xff09; 的C#封装版本&#xff0c;目前版本为5.2&#xff0c;关于Tesseract的详细介绍…

使用Python+Flask/Moco框架/Fiddler搭建简单的接口Mock服务

一、Mock测试 1、介绍 mock&#xff1a;就是对于一些难以构造的对象&#xff0c;使用虚拟的技术来实现测试的过程mock测试&#xff1a;在测试过程中&#xff0c;对于某些不容易构造或者不容易获取的对象&#xff0c;可以用一个虚拟的对象来代替的测试方法接口mock测试&#x…