数据包络分析——SBM模型

写在前面:
博主本人大学期间参加数学建模竞赛十多余次,获奖等级均在二等奖以上。为了让更多学生在数学建模这条路上少走弯路,故将数学建模常用数学模型算法汇聚于此专栏,希望能够对要参加数学建模比赛的同学们有所帮助。


目录

  • 1. 引言
  • 2. 模型建立
  • 3. 模型求解


1. 引言

  前面我们已经介绍了数据包络分析的CCR模型和BCC模型,具体可参阅链接: 数据包络分析——CCR模型和链接: 数据包络分析——BCC模型,而CCR模型和BCC模型都是径向模型,在径向模型中,效率改善主要指的是投入或产出的等比例线性缩放,同时忽略了平行于坐标轴的弱有效的情形,而SBM模型纳入无效率的松弛改进,保证最终的结果是强有效的。

2. 模型建立

  基本的SBM模型形式为
min ⁡ ρ = 1 − 1 m ∑ j = 1 m s j − / x k j 1 + 1 q ∑ r = 1 q s r − / y k r s.t.  { X λ + s − = x k Y λ − s + = y k λ , s − , s + ⩾ 0 , j = 1 , ⋯ , m ; r = 1 , ⋯ , q \begin{array}{l}\min \rho=\frac{1-\frac{1}{m} \sum_{j=1}^{m} s_{j}^{-} / x_{k j}}{1+\frac{1}{q} \sum_{r=1}^{q} s_{r}^{-} / y_{k r}} \\ \text { s.t. }\left\{\begin{array}{l}X \lambda+s^{-}=x_{k} \\ Y \lambda-s^{+}=y_{k} \\ \lambda, s^{-}, s^{+} \geqslant 0, \quad j=1, \cdots, m ; r=1, \cdots, q\end{array}\right.\end{array} minρ=1+q1r=1qsr/ykr1m1j=1msj/xkj s.t.  Xλ+s=xks+=ykλ,s,s+0,j=1,,m;r=1,,q其中,对每个决策单元 k = 1 , ⋯ , n k=1, \cdots, n k=1,,n
  目标函数 ρ ∗ \rho^{*} ρ表示效率值,该模型同时从投入和产出两个方面考察无效率的表现,故称为非径向模型。由于该模型为非线性模型,将该模型转化为线性模型,同时向模型中加入非期望产出得:
τ ∗ = min ⁡ ( t − 1 m ∑ j = 1 m s j − x k j ) s.t.  { t + 1 s 1 + s 2 ( ∑ r = 1 s 1 s r g y k r g + ∑ r = 1 s 2 s r b y k r g ) = 1 x k t = X Λ + S − y k g t = X Λ − S g y k b t = X Λ + S b Λ , S − , S g , S b ⩾ 0 t > 0 \begin{array}{l}\tau^{*}=\min \left(t-\frac{1}{m} \sum_{j=1}^{m} \frac{s_{j}^{-}}{x_{k j}}\right) \\ \text { s.t. }\left\{\begin{array}{l}t+\frac{1}{s_{1}+s_{2}}\left(\sum_{r=1}^{s_{1}} \frac{s_{r}^{g}}{y_{k r}^{g}}+\sum_{r=1}^{s_{2}} \frac{s_{r}^{b}}{y_{k r}^{g}}\right)=1 \\ x_{k} t=X \Lambda+S^{-} \\ y_{k}^{g} t=X \Lambda-S^{g} \\ y_{k}^{b} t=X \Lambda+S^{b} \\ \Lambda, S^{-}, S^{g}, S^{b} \geqslant 0 \\ t>0\end{array}\right.\end{array} τ=min(tm1j=1mxkjsj) s.t.  t+s1+s21(r=1s1ykrgsrg+r=1s2ykrgsrb)=1xkt=XΛ+Sykgt=XΛSgykbt=XΛ+SbΛ,S,Sg,Sb0t>0 其中,对每个决策单元 k = 1 , ⋯ , n k=1, \cdots, n k=1,,n。该模型中包含投入矩阵 X n × m X_{n \times m} Xn×m的转置,期望产出矩阵 Y n × s 1 g Y_{n \times s_{1}}^{g} Yn×s1g的转置,非期望产出 Y n × s 2 b Y_{n \times s_{2}}^{b} Yn×s2b的转置,模型参数主要包括投影变量 Λ \Lambda Λ,松弛变量 S − 、 S g 、 S b S^{-}、S^{g}、S^{b} SSgSb t t t

3. 模型求解

我们仍然用前面的例子:
  某市教委需要对六所重点中学进行评价,其相应的指标如表所示。表中的生均投入和非低收入家庭百分比是输入指标,生均写作得分和生均科技得分是输出指标。请根据这些指标,评价哪些学校是相对有效的。
在这里插入图片描述
  根据模型编写MATLAB代码如下:

%非期望产出SBM模型
clc,clear
X=[89.39 86.25 108.13 106.38 62.4 47.19;64.3 99 99.6 96 96.2 79.9];
Y=[25.2 28.2 29.4 26.4 27.2 25.2;223 287 317 291 295 222];
Z=[72 85 95 63 81 70]; %非期望产出:生均艺术得分
[m,n]=size(X);
s1=size(Y,1);
s2=size(Z,1);
c=1/(s1+s2);rho=[];
w=[];
for i=1:nf=[-1./(m*X(:,i)') zeros(1,s1) zeros(1,s2) zeros(1,n) 1];A=[];b=[];UB=[];LB=zeros(m+s1+s2+n+1,1);Aeq=[zeros(1,m) c*1./Y(:,i)' c*1./Z(:,i)' zeros(1,n) 1;eye(m) zeros(m,s1)  zeros(m,s2) X -X(:,i);zeros(s1,m) -eye(s1) zeros(s1,s2) Y -Y(:,i);zeros(s2,m) zeros(s2,s1) eye(s2) Z -Z(:,i)];beq=[1 zeros(m,1)' zeros(s1,1)' zeros(s2,1)'];[w(:,i),rho(i)]=linprog(f,A,b,Aeq,beq,LB,UB);
end
rho'

  得到每个学校的效率值为

1.0000 、 0.8297 、 0.8692 、 1.0000 、1.0000 、 1.0000

  可见在带非期望产出的情况下,学校A、D、E、F是有效的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/142557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

List<HashMap<String,String>>实现自定义字符串排序(key排序、Value排序)

系列文章目录 SpringBootVue3实现登录验证码功能 Java实现发送邮件(定时自动发送邮件) 换个角度使用Redis去解决跨域存取Session问题 Redis缓存穿透、击穿、雪崩问题及解决方法 Spring Cache的使用–快速上手篇 更多该系列文章请查看我的主页哦 文章目录…

人工智能机器学习-飞桨神经网络与深度学习

飞桨神经网络与深度学习-机器学习 目录 飞桨神经网络与深度学习-机器学习 1.机器学习概述 2.机器学习实践五要素 2.1.数据 2.2.模型 2.3.学习准则 2.4.优化算法 2.5.评估标准 3.实现简单的线性回归模型 3.1.数据集构建 3.2.模型构建 3.3.损失函数 3.4.模型优化 3…

从零学算法(LCR 178)

教学过程中,教练示范一次,学员跟做三次。该过程被混乱剪辑后,记录于数组 actions,其中 actions[i] 表示做出该动作的人员编号。请返回教练的编号。 示例 1: 输入:actions [5, 7, 5, 5] 输出:7 …

LED显示屏主要由哪些部件组成?

LED显示屏是一种广泛用于信息显示和广告宣传的设备,通常由以下几个主要部件组成: LED模块:LED显示屏的核心部件是LED模块,它包括了许多小的LED灯珠,这些LED灯珠可以发光。LED模块的大小和密度决定了显示屏的分辨率和亮…

向《华为人》学习企业内刊的栏目设置和好故事撰写指南

昨天华研荟介绍了企业内刊是否需要办,如何办的有价值。今天给大家介绍具体的企业内刊栏目设置。 “它山之石,可以攻玉。”我们今天不谈理论,我们从实践中学习,来看看华为这座高山是如何做的,我们从华为的内刊《华为人…

位运算符与高级操作

位运算符与高级操作 运算符 高级操作 左移实现乘法 左移n位等价于乘以2的n次方 int x; x 2; x x << 2; x x << 3;使用左移实现乘法运算仅限于乘以2的倍数 是不是只要左移就能够实现乘以2的倍数呢? char x 120; x x << 1;右移实现除法 右移n位等价于除…

2023 “华为杯” 中国研究生数学建模竞赛(E题)深度剖析|数学建模完整代码+建模过程全解全析

​ 问题一 血肿扩张风险相关因素探索建模 思路&#xff1a; 根据题目要求,首先需要判断每个患者是否发生了血肿扩张事件。根据定义,如果后续检查的血肿体积比首次检查增加≥6 mL或≥33%,则判断为发生了血肿扩张。 具体判断步骤: (1) 从表1中提取每个患者的入院首次影像检查…

数据库:Hive转Presto(一)

本人因为工作原因&#xff0c;经常使用hive以及presto&#xff0c;一般是编写hive完成工作&#xff0c;服务器原因&#xff0c;presto会跑的更快一些&#xff0c;所以工作的时候会使用presto验证结果&#xff0c;所以就要频繁hive转presto&#xff0c;为了方便&#xff0c;我用…

蓝牙核心规范(V5.4)10.5-BLE 入门笔记之HCI

HCI全称:HOST Constroller Interface 主机控制器接口(HCI)定义了一个标准化的接口,通过该接口,主机可以向控制器发出命令,并且控制器可以与主机进行通信。规范被分成几个部分,第一部分仅从功能的角度定义接口,不考虑具体的实现机制,而其他部分定义了在使用四种可能的…

记一次springboot的@RequestBody json值注入失败的问题(字段大小写的问题)

有时候做后端开发时&#xff0c;难免会与算法联调接口&#xff0c;很多算法的变量命名时全部大写&#xff0c;在实际springmvc开发中会遇到无法赋值的问题。 先粘贴问题代码 entity类 Data NoArgsConstructor EqualsAndHashCode(callSuper true) ToString(callSuper true) …

十,从摄像机打印立方体的一个外表面

从摄像机是与主摄像机保持同样的投影矩阵&#xff0c;所以&#xff0c;不用单独设置。如果把漫游器还是在&#xff08;1&#xff0c;0,0)这个位置&#xff0c;各个从摄像机看向上下左右前后六个面&#xff0c;那么会出现什么现象呢&#xff1f;应该是x正轴打印出来&#xff0c;…

LLaMa

文章目录 Problems403 代码文件LLaMA: Open and Efficient Foundation Language Models方法预训练数据结构优化器一些加速的方法 结果Common Sense ReasoningClosed-book Question AnsweringReading ComprehensionMassive Multitask Language Understanding Instruction Finetu…

【实验记录】AGW | Visible-Infrared Re-ID

【RT】Visible Thermal Re-IDDeep Learning for Person Re-identification: A Survey and Outlook中提出了一个针对单/跨模态行人重识别的baseline&#xff1a;AGW 做过两次&#xff0c;在测试阶段有问题&#xff0c;现在再重做一次&#x1f914;Code RTX3090 修改数据集路…

【空间-光谱联合注意网络:多时相遥感图像】

A Spatial–Spectral Joint Attention Network for Change Detection in Multispectral Imagery &#xff08;一种用于多光谱图像变化检测的空间-光谱联合注意网络&#xff09; 变化检测是通过比较双时相图像来确定和评估变化&#xff0c;这是遥感领域的一项具有挑战性的任务…

c++图像的边缘检测

图像的边缘检测 cv::Canny 是 OpenCV 中用于进行边缘检测的函数&#xff0c;特别是用于检测图像中的边缘。Canny 边缘检测是一种广泛使用的技术&#xff0c;它能够识别图像中的边缘&#xff0c;这些边缘通常表示对象之间的边界或图像中的显著特征 void cv::Canny(const cv::M…

【lesson7】git的介绍及使用

文章目录 什么是gitgit的历史git使用在gitee上创建仓库git clone HTTPS地址git add .git add 文件名git commit “日志”git pushgit loggit rm 文件名git statusgit pull 什么是git git是版本控制器&#xff0c;那么什么是版本控制器呢&#xff1f; 下面讲个故事为大家讲解一…

运算放大器(四):输入偏置电流

一、定义 运放输入级一般由 或 MOSFET 构成&#xff0c;理想情况下&#xff0c;运放的输入端没有电流流入。实际上为保证放大器工作在线性范围&#xff0c;运放的输入端一般设计成基极&#xff08;栅极&#xff09;开路&#xff0c;由外电路提供电流的方式&#xff0c;所以需要…

c++-string

文章目录 前言一、STL库介绍二、标准库中的string类1、string类介绍2、string类使用3.1 string类的构造函数3.2 string类对象的容量操作3.3 string类对象的遍历操作3.4 string类对象的访问操作3.5 string类对象的修改操作3.6 string类对象的字符串操作 三、模拟实现string类四、…

Prettier - Code formatter格式化规则文件

文章目录 前言安装使用 前言 先前公司在规范代码时,由于个人业务繁忙跟技术总监是后端出身用的IDEA不熟悉vsCode;以及大多数时都自己一个人负责一个项目,当时并不看重这些;最近在整理vue3tsvite的脚手架模板(平时工作用的react),开始整理格式化代码,方便之后 vue 和 react 中应…

element plus table 拖拽

element plus table 拖拽 sortablejs package.json "sortable.js": "^0.3.0","sortablejs": "^1.14.0", "vuedraggable": "^2.24.3",我的table 是在 el-dialog 里面的 在开发过程中出现过两个问题 1.进入加载 …